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Information sharing has been shown previously in the literature to be effective in reducing the magnitude of the bullwhip
effect. Most of these studies have focused on a particular information-sharing setting that assumes demand follows an
autoregressive process. In this paper, we contribute to the literature by presenting a price-sensitive demand model and a
first-order autoregressive pricing process that is coupled to the optimal order-up-to inventory policy and the optimal min-
imum mean-squared error forecasting technique. We compare a no information-sharing setting – in which only the first
stage of the supply chain observes end-customer demands and market prices, and upstream echelons must base their
forecasts on downstream incoming orders – with two information-sharing settings, end-demand and order information
and end-demand information. In the case of end-demand and order information, upstream echelons develop their fore-
casts and plan their inventories based on the end-customer demand, price information, and downstream orders. With
end-demand information, upstream echelons use only end-customer demands and market prices to conduct their forecast-
ing and planning. We derive the analytical expressions of the bullwhip effect with and without information sharing,
quantify the impact of information sharing on the reduction of the bullwhip effect associated with end-demand and order
information and end-demand information, and explore the optimal information setting that could most significantly
restrain the bullwhip effect. Our analysis suggests that the value of these two information-sharing settings can be high,
especially when the pricing process is highly correlated over time or when the product price sensitivity coefficient is
small. Moreover, we find that the value of adopting end-demand and order information is always greater than that of
end-demand information.

Keywords: information sharing; bullwhip effect; order-up-to inventory policy; minimum mean-squared error forecasting
technique

1. Introduction

Information asymmetry is one of the most powerful sources of the bullwhip effect. However, sharing information
between supply chain partners can be viewed as a major means for improving the performance of the supply chain
(Lee, So, and Tang 2000). For example, Wal-Mart’s unprecedented, high inventory turnover has been attributed to its
successful implementation of electronic data exchange (EDI). Information sharing involves the sharing of downstream
retailer demand information with its upstream businesses. An active stream of research has been performed on the value
of information sharing in the presence of the bullwhip effect. This stream of research is often based on an autoregressive
demand process, such as the first-order autoregressive demand (AR (1)) that was published in Lee, So, and Tang
(2000), the autoregressive and moving average (ARMA) demand of (1, 1) that was published in Graves (1999), and the
more general ARMA demand of ( p, q) that was published in Gaur, Giloni, and Seshadri (2005). In addition, the major-
ity of this research focused on a particular information-sharing setting, such as the end-demand and order information
setting that was published in Lee, So, and Tang (2000) and the end-demand information setting that was published in
Chen et al. (2000).

Two interesting questions arise in the literature regarding information sharing. First, what value can be obtained in
information sharing when demands are not AR (1), ARMA (1, 1), or ARMA (p, q)? In particular, in previous studies,
demand followed an autoregressive process, and the demand correlation parameter on the bullwhip effect was examined.
However, the managerial insights of this parameter are difficult to explain in practice. A price-sensitive demand model
will allow us to focus on a different perspective when explaining the impact of demand process characteristics, such as
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the market demand scale and the price sensitivity coefficient, on the value of information sharing, which could provide
us with more managerial insights. Second, most studies indicated that upstream businesses would benefit from a given
information-sharing setting, such as end-demand and order information or end-demand information. However, what
information-sharing setting is best for the supply chain to use? In other words, in what way should individual enterprises
in the supply chain share demand information?

To address these questions, we extend the work of Ma et al. (2013), who considered a two-level supply chain in
which the demand was price-sensitive by quantifying the bullwhip effect on product orders (i.e., the increase in product-
order variability) and inventory (i.e., the increase in inventory variability). We present an extension of that work that
allows us to quantify the value of the observed demand and price information on reducing the bullwhip effect. In partic-
ular, we consider a three-level supply chain, which consists of a manufacturer, wholesaler, and retailer, where the
demand that is faced by the retailer is price sensitive. The price follows dynamics with an AR (1) pricing process, and
different demand process characteristics are considered, such as the market demand scale, the price sensitivity coeffi-
cient, and the price correlation coefficient, which have not been analysed in previous studies by Chen et al. (2000),
Chen, Ryan, and Simchi-Levi (2000), Lee, So, and Tang (2000), or Chen and Lee (2009). Assuming that the retailer
and wholesaler use an optimal order-up-to inventory policy and an optimal minimum mean-squared error (MMSE) fore-
casting technique, we derive the analytical expressions of the bullwhip effect with three information-sharing settings,
i.e., no information sharing, end-demand and order information, and end-demand information, and deduce the conditions
by which the retailer chooses an information setting to significantly restrain the bullwhip effect.

This paper is organised as follows. Section 2 is devoted to a review of the literature. Section 3 establishes a price-
sensitive demand function in which the price follows an AR (1) pricing process. Section 4 introduces the inventory pol-
icy and the forecasting technique. Section 5 analyses the retailer’s and wholesaler’s order quantity by treating the retai-
ler’s order quantity as the demand for the wholesaler. Section 6 derives the analytical expressions of the bullwhip effect
for each echelon and compares the order oscillations for the three information settings (i.e., no information sharing, end-
demand and order information, and end-demand information). Section 7 provides numerical analyses that illustrate the
value of information sharing with end-demand and order information and with end-demand information. Finally, Sec-
tion 8 presents the conclusions from our analyses and suggests follow-up research directions.

2. Literature review

There is a vast body of literature on the bullwhip effect and information sharing. Our research is built on two lines of
this literature: the papers on the bullwhip effect and those on information sharing.

2.1 Bullwhip effect

The bullwhip effect is the phenomenon of information distortion as ordering information percolates upstream, which
means that a downstream demand fluctuation will lead to larger fluctuations in the variance of upstream ordering (Lee,
Padmanabhan, and Whang 1997a, 1997b). This distorted information can lead to tremendous inefficiencies, such as
excessive inventory investment, poor customer service, lost revenues, misguided capacity plans, ineffective transporta-
tion, and missed production schedules (Lee, Padmanabhan, and Whang 1997b). Therefore, the bullwhip effect is one of
the most widely investigated phenomena in supply chain management.

Over the past few decades, the bullwhip effect has become a popular topic for researchers and practitioners. Early stud-
ies have attempted to demonstrate the existence of the bullwhip effect and identify the causes of such an effect (Forrester
1958, 1961; Sterman 1989). Currently, theoretical studies focus on quantifying and searching for remedies for this effect.
Lee, Padmanabhan, and Whang (1997a) provided a formal definition of the bullwhip effect and systematically analysed its
four main causes: demand signal processing, shortage games, order batching, and price adjustment. In addition, they pro-
posed countermeasures, such as avoiding multiple demand-forecast updates, breaking order batches, stabilising prices, and
eliminating gaming in shortage. Chen et al. (2000) and Chen, Ryan, and Simchi-Levi (2000) made an important contribu-
tion by recognising the role of demand forecasting as a filter for the bullwhip effect. Chen et al. (2000) quantified the bull-
whip effect for a two-level supply chain in which the retailer used the moving average (MA) forecasting technique and
extended those results to multiple-stage supply chains. Additionally, Chen, Ryan, and Simchi-Levi (2000) demonstrated
that the use of exponential smoothing (ES) technology by the retailer could also cause the bullwhip effect. However,
although MA and ES are the most commonly used forecasting techniques, these methods are not optimal. Alwan, Liu, and
Yao (2003) studied the bullwhip effect when MMSE forecasting was employed and found that it is possible to reduce or
even eliminate this effect by using an MMSE-optimal forecasting scheme. Zhang (2004), Hosoda and Disney (2006),
Agrawal, Sengupta, and Shanker (2009), and Sodhi and Tang (2011) have conducted similar work. However, Wang, Jia,

3086 Y. Ma et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 1
9:

52
 0

8 
M

ay
 2

01
5 



and Takahashi (2005) proposed the new term “extended-bullwhip effect” to describe information distortion other than the
bullwhip effect, and they quantified the negative impact of this new term for a two-level supply chain. The above studies
have analytically examined the bullwhip effect under the assumption of an AR (1) demand model and an order-up-to
inventory policy. Furthermore, the discrete control theory was implemented by Disney and Towill (2003) and Disney,
Towill, and Van De Velde (2004) to measure the bullwhip effect and to evaluate the inventory variance produced by an
ordering policy. Likewise, by using the control theory, Disney et al. (2006) quantified the bullwhip effect, inventory vari-
ance, and customer service levels that the inventory variance generates for a generalised order-up-to policy for indepen-
dent and identically distributed (i.i.d.), AR (1), first-order moving average, and ARMA demand processes. Similar or
more advanced demand models have also been adopted by Graves (1999), Aviv (2003), Gaur, Giloni, and Seshadri
(2005), Gilbert (2005), Croson and Donohue (2006), Hsiao and Shieh (2006), Kim et al. (2006), Dhahri and Chabchoub
(2007), Duc, Luong, and Kim (2008), Chen and Lee (2009), Zhang and Zhao (2010), Zhang and Burke (2011), Ma et al.
(2013), and Wei, Wang, and Qi (2013).

In addition to the theoretical efforts for determining mathematical representations of the bullwhip effect, attempts have
also been made to validate its existence in empirical studies. Lee, Padmanabhan, and Whang (1997b) used examples such
as Procter & Gamble (P&G) and Hewlett-Packard (HP) to exemplify the existence of and remedies for the bullwhip effect.
Wu and Katok (2006) used a controlled laboratory simulation of the beer game to investigate the effect of learning and
communication on the bullwhip effect, and this group found that the bullwhip effect is, at least in part, caused by insuffi-
cient coordination between supply chain partners. Hence, information sharing can be a potentially valuable and effective
method by which to secure a competitive advantage and improve organisational performance in supply chain management
(Li et al. 2005, 2006). However, although price stability is frequently proposed to counter the bullwhip effect (Lee,
Padmanabhan, and Whang 1997a, 1997b), Hamister and Suresh (2008) used data from a supermarket scanner to show that
utilising fixed instead of dynamic pricing may result in a higher sales variance, order variance, and the bullwhip effect.
Furthermore, Niranjan, Wagner, and Aggarwal (2011) proposed a framework to more comprehensively capture the under-
lying information distortion through a case study of a real-life automotive supply chain. Klug (2013) examined the
variance amplification of orders in a car manufacturing context with the help of system dynamics modelling. The above
studies investigate the bullwhip effect using firm-level data. Additionally, macroeconomic industry-level data have been
collected by Cachon, Randall, and Schmidt (2007) to search for the bullwhip effect. This group found that wholesale
industries exhibit a bullwhip effect, but retail and manufacturing industries generally do not exhibit this effect.

2.2 Information sharing

As mentioned above, information sharing has been empirically shown to be an effective way to improve organisational
performance (Kulp, Lee, and Ofek 2004; Li et al. 2005, 2006; Zhou and Benton 2007; Prajogo and Olhager 2012). In
addition, analytical models have been established to investigate the impact of various information-sharing models (i.e.,
product information sharing, process information sharing, resource information sharing, inventory information sharing,
planning information sharing, and demand/order information sharing) on the dynamics index model of supply chain
performance. For example, inventory performance was used by Lee, So, and Tang (2000), process indices were used by
Tsung (2000), customer service indices were used by Chen (1998), financial indices were used by Cachon and Fisher
(2000), and the bullwhip effect index was used by Dejonckheere et al. (2004). For a more detailed discussion on the
various sharing models and the dynamics performance index model, we refer readers to review the work of Huang,
Lau, and Mak (2003). Because the purpose of this paper is to investigate the impact of demand/order information
sharing on the bullwhip effect, we restrict our attention to the literature review of demand/order information sharing.
The impact that other information sharing models, such as product information sharing, have on the bullwhip effect is
beyond the scope of this paper.

Partners along the traditional supply chain communicate demand information exclusively in the form of orders.
However, because order data often distort the true dynamics of market demand, the bullwhip effect and larger inventory
costs become unavoidable (Lee, Padmanabhan, and Whang 1997a, 1997b; Lee, So, and Tang 2000). To counter these
negative impacts, Lee and Whang (2000) described the types of information that are shared and discussed how and why
this information is shared by using industrial examples. Lee, So, and Tang (2000) devised an analytical method by which
the benefits of demand information sharing could be quantified and the drivers of the magnitudes of these benefits could
be identified for a two-level supply chain with an AR (1) demand process. Their analysis suggested that the value of
demand information sharing could be high, especially when demands were significantly correlated over time. However,
Lee, So, and Tang (2000) assumed that the upstream manufacturer did not infer demand information from the retailer’s
orders. Raghunathan (2001) relaxed this assumption by showing that the value of obtaining information on actual demand
from the retailer is insignificant if the demand information is inferable. Gaur, Giloni, and Seshadri (2005) extended the
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results of Raghunathan (2001) to cases in which demand was generated by a more general ARMA process. In the case of
ARMA (l, l) demand, this group found that sharing or inferring retail demand led to a 16.0% average reduction in the
manufacturer’s safety-stock requirement. Chen and Lee (2009) investigated the value of information sharing and order
variability control by using a generalised demand model, i.e., the Martingale model of forecast evolution (MMFE). A
similar information-sharing setting has also been adopted by Gavirneni, Kapuscinski, and Tayur (1999), Hosoda and
Disney (2006, 2012), Hsiao and Shieh (2006), Agrawal, Sengupta, and Shanker (2009), and Ali and Boylan (2011).

The above studies investigated the no information sharing and the end-demand and order information settings to
develop insights into the value of information sharing. However, because the order quantity of the retailer often distorts
the true dynamics of the marketplace and the manufacturer has complete knowledge of the end customer demand history
data through information sharing, many authors have assumed that upstream businesses only used the actual customer
demands, i.e., the end-demand information, for their future planning. Chen et al. (2000) investigated a multiple-stage sup-
ply chain under an AR (1) demand process with and without end-demand information and demonstrated that the bullwhip
effect could be reduced but not completely eliminated by centralising demand information. A comprehensive survey on
the benefits of information sharing on a supply chain can be found in Chen (2003). Additionally, Kim and Ryan (2003)
presented an extension of the work conducted by Chen et al. (2000) and quantified the value of the observed demand data
and the impact of suboptimal forecasting on the expected costs of the retailer. Dejonckheere et al. (2004) compared a
traditional supply chain, in which there was no information sharing, with an information-enriched supply chain, in which
customer demand data were shared throughout the chain, for two types of replenishment rules that are based on control
systems engineering. This study showed that information sharing helped to significantly reduce the bullwhip effect at
higher levels of a chain with an order-up-to policy and that information sharing was necessary to reduce order variance at
higher levels of a chain with the smoothing policy. Chatfield et al. (2004) tested the accuracy of the simulation by verify-
ing the results in the papers by Chen et al. (2000) and Dejonckheere et al. (2004) and found that lead-time variability
exacerbates the amplification of variance in a supply chain and that information sharing and information quality are
highly significant. Moyaux, Chaib-Draa, and D’Amours (2007) studied how to separate demand into original demand and
adjustments and described two principles that explained how to use the shared information to reduce the bullwhip effect.
Ouyang (2007) analysed the effect of information sharing on supply chain stability and the bullwhip effect in multi-stage
supply chains that operated with linear and time-invariant inventory management policies. Zhang and Zhao (2010) ana-
lysed two parallel supply chains that had interacting demand streams and investigated the value of acquiring information
on the opposing demand stream. Barlas and Gunduz (2011) investigated some of the structural sources of the bullwhip
effect and explored the effectiveness of information sharing in eliminating undesirable fluctuations by using a system
dynamics simulation. The value of end-demand information sharing can also be found in the following publications:
Chen (1998), Fiala (2005), Wang, Jia, and Takahashi (2005), Kim et al. (2006), Viswanathan, Widiarta, and Piplani
(2007), Hwarng and Xie (2008), Kelepouris, Miliotis, and Pramatari (2008), Sohn and Lim (2008), Bottani and Montanari
(2010), Ouyang and Li (2010), Zhang and Cheung (2011), and Chatfield (2013).

The contributions of this paper are twofold. First, in previous research, demand was assumed to follow an autore-
gressive process, and the demand correlation parameter on the value of information sharing was examined (Lee, So, and
Tang 2000; Kim and Ryan 2003). However, the managerial insights of this parameter are difficult to explain in practice.
Our research will consider a price-sensitive demand function in which the price follows an AR (1) pricing process. This
method will allow us to focus on a different perspective to explain the impact of demand process characteristics such as
the market demand scale on the value of information sharing. Second, previous research about the impact of information
sharing has focused on end-demand and order information or on end-demand information. In contrast to previous
studies, this paper is the first to quantify the value of end-demand and order information and end-demand information
simultaneously. By comparing the bullwhip effect under the two information-sharing settings, we show how individual
enterprises in the supply chain should share demand information to more significantly restrain the bullwhip effect.

3. Demand model

If a simple three-level supply chain, which consists of a manufacturer, a wholesaler, and a retailer, is considered, the
external demand for a single product occurs at the retailer, where the demand that is faced by that retailer is price sensi-
tive. If dt and pt are the customer demand and market price in period t, respectively, we obtain the following basic lin-
ear demand function model:

dt ¼ a� bpt þ et; ð1Þ
where a refers to the market demand scale; b is the price sensitivity coefficient; and et is an i.i.d. variable, which is a
normally distributed error term across time that has a mean of zero and a variance of r2. We interpret the error term et
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to be the exogenous demand shock that is specific to the retailer and has no relation to the market price. Therefore, the
covariance structure between the error term and the market price is as follows: Covðpt; et0 Þ ¼ 0 for any t or t0.

We consider a market setting in which the retailer sells in a perfectly competitive market and exerts no control over
the market clearing price. When we incorporate price dynamics into our demand model, the market price evolution is
determined by the overall market demand and supply. If the market price pt in Equation (1) is an AR (1) pricing process
that describes price dynamics1:

pt ¼ lþ qpt�1 þ gt; ð2Þ

where l is a nonnegative constant that determines the mean of the price; q is the price correlation coefficient and
q 2 ð0; 1Þ; and gt is an i.i.d. variable, which is a normally distributed error term with a mean of zero and a variance of

d2. We interpret the error term gt to be the effect of overall market shocks on the price and assume that gt and the mar-
ket price have the following covariance structure: Covðpt; gt0 Þ ¼ 0 if t \ t0.

We can derive from Equations (1) and (2) that dt ¼ l0 þ kdt�1 þ xt, where l0 ¼ að1� qÞ � bl, k ¼ q, and xt ¼ et�
qet�1 � bgt. Furthermore, the model that describes the demand in Equation (1) and the price dynamics in Equation (2)
can be reduced to an autoregressive demand process.2 Based on their experience with a major national producer and
wholesaler of consumer products, Erkip, Hausman, and Nahmias (1990) have observed high correlations between succes-
sive monthly demands (approximately 0.7). Additionally, Lee, So, and Tang (2000) reported that it is common to have a
positive demand correlation coefficient k in a high-tech industry or for the sales pattern of most products. This group
found that k varies from 0.26 to 0.89 for 150 stock-keeping units (SKUs), and because k ¼ q, we can also deduce that
the price correlation coefficient q > 0 is common. The assumption that q 2 ð0; 1Þ ensures that the AR (1) pricing pro-
cess is stationary (Box and Jenkins 1994),3 and a similar assumption has been adopted by Ma et al. (2013). When the
coefficient q is positive, the process is reflected by a wandering or meandering sequence of observations. In particular, if
q has a large positive value, neighbouring values in the process are similar and the process exhibits marked trends. There-
fore, by utilising different values for q, one can represent a wide variety of pricing process behaviours, and it can easily

be shown from Equation (2) that lp ¼ EðptÞ ¼ l=ð1� qÞ and r2p ¼ VarðptÞ ¼ d2=ð1� q2Þ. Furthermore, it can be shown

from Equation (1) that ld ¼ EðdtÞ ¼ a� bl=ð1� qÞ and r2d ¼ VarðdtÞ ¼ r2 þ b2d2=ð1� q2Þ. Notably, we have
assumed that Covðpt; et0 Þ ¼ Covðlþ qpt�1þ gt; et0 Þ ¼ Covðgt; et0 Þ ¼ 0 for any t or t0'. Thus, the error terms are indepen-
dent across time and are not contemporaneously correlated.

In previous studies, most researchers, such as Lee, Padmanabhan, and Whang (1997a), Chen et al. (2000), and
Chen, Ryan, and Simchi-Levi (2000), adopted an AR (1) model to describe the demand process. These groups
investigated the bullwhip effect as a function of the demand correlation parameter. However, it is difficult to
explain the managerial insights of this parameter in practice. Our work analyses a price-sensitive demand function
whereby the price is an AR (1) pricing process. Therefore, we focus on a different perspective to explain the
impact of demand process characteristics, which include the market demand scale a, the price sensitivity coefficient
b, the price correlation coefficient q, the error term variances r2 and d2, and information sharing on the bullwhip
effect. This analysis provides us with more managerial insights into our research.

Similar to Lee, So, and Tang (2000), we consider a periodic review system in which each stage of the supply chain
reviews its inventory level and replenishes its inventory ordering from the upstream site at every period. All of the
results are consistent within each adopted review period (e.g., day or week), and we will introduce the ordering process
in the next section.

4. Ordering process

The sequence of events during the replenishment period of our model is similar to those in the traditional beer game
(Sterman 1989). First, the retailer’s ordering process is described. At the end of period t � 1, the retailer, or stage 1,
observes the consumer demand dt�1, calculates its order-up-to level y1t for period t, and places an order of quantity q1t
to the wholesaler at the beginning of period t to raise its current inventory to level y1t . After the lead time and at the
beginning of period t þ L1, the retailer receives the product from the wholesaler and the excess demand is backordered.
Second, the wholesaler handles its ordering process. At the beginning of period t, the wholesaler, or stage 2, receives
and ships the required order quantity q1t to the retailer, and backorders are allowed when the wholesaler does not pos-
sess enough stock to fill this order. The wholesaler calculates its order-up-to level y2t for period t and immediately orders
q2t from the manufacturer at the beginning of period t according to its current inventory level. The wholesaler receives
the shipment of the order q2t at the beginning of period t þ L2.
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Note that the retailer (or the wholesaler) must utilise certain forecasting techniques to calculate its order-up-to level
y1t (or y2t ). We will introduce the order-up-to inventory policy and the MMSE forecasting technique in this section.

4.1 Order-up-to policy

The order-up-to policy is one of the most studied policies of the supply chain model (Lee, Padmanabhan, and Whang
1997a; Chen et al. 2000; Chen, Ryan, and Simchi-Levi 2000). When we assume that the retailer and the wholesaler will
adopt the order-up-to inventory policy, the ordering decision in an order-up-to system is as follows:

q1t ¼ y1t � ðy1t�1 � dt�1Þ; ð3Þ

and

q2t ¼ y2t � ðy2t�1 � q1t Þ: ð4Þ

Therefore, the order quantity of the retailer (or the wholesaler) at the beginning of period t is the order-up-to level
that is used in period t minus its inventory position at the end of period t � 1. Notice from Equations (3) and (4) that
the product order quantity qit (i ¼ 1; 2) may be negative, and if so, we assume that this excess inventory is returned
without cost. We discuss the impact of this assumption on our results in Appendix A. Additionally, we assume that
backorders are allowed when the retailer has excess demand and the wholesaler does not have enough stock to fill the
retailer’s order, i.e., the inventory position of the retailer and the wholesaler at the end of any period, y1t�1 � dt�1 and
y2t�1 � q1t , may be negative. This assumption may not be realistic in a retail setting, therefore we also consider the
impact of this assumption on our results in Appendix A.

The order-up-to level consists of an anticipation stock that is retained to meet the expected lead-time demand and a
safety stock for hedging against unexpected demand. Therefore, the order-up-to level is updated every period according
to the following:

yit ¼ D̂Li
t þ zir̂

Li
t ; i ¼ 1; 2; ð5Þ

where D̂Li
t is an estimate of the mean lead-time demand of stage i, zi is a constant that has been set to meet a desired

service level and is often referred to as the safety factor (Chen, Ryan, and Simchi-Levi 2000), and r̂Lit is an estimate of
the standard deviation of the forecasting error of the Li period. To simplify our analysis, we set zi to zero in this paper.4

When a policy of this form is used, an inflated value of Li with the excess inventory that represents the safety stock is
often used. For example, a retailer that faces a lead time of two weeks may choose to keep inventory that is equal to
four weeks of forecast demand, and the extra inventory represents its safety stock. These types of policies have often
been used in previous research, such as in Ryan (1997), Chen et al. (2000), and Kim and Ryan (2003).

When the demand is normally distributed, the order-up-to policy minimises the total expected holding and shortage
costs of the retailer and is considered to be the optimal inventory policy (Lee, Padmanabhan, and Whang 1997a; Lee,
So, and Tang 2000; Zhang 2004). We have shown that our demand model in Equation (1) and price dynamics model in
Equation (2) can be reduced to an autoregressive demand process, i.e., dt ¼ l0 þ kdt�1 þ xt, where l0 ¼ að1� qÞ � bl,
k ¼ q, and xt ¼ et � qet�1 � bgt. Because the errors et and gt are i.i.d., normally distributed across time, and are not
contemporaneously correlated, the demand is also normally distributed. Therefore, in this research, the retailer uses the
optimal order-up-to inventory policy.

4.2 MMSE forecasting technique

To calculate the retailer’s (or wholesaler’s) order-up-to level y1t (or y2t ), the retailer (or wholesaler) should use certain

forecasting techniques to estimate the mean lead-time demand D̂L1
t (or D̂L2

t ). Most researchers and practitioners focus on
three basic techniques to conduct forecasting: the MA, ES, and MMSE techniques. MA is a forecasting technique that
uses the average of actual observations from a specified number of prior periods, ES is a forecasting technique that uses
a weighted, moving average of past data as the basis for a forecast, and MMSE is provided by the conditional expecta-
tion that is given to previous observations (Box and Jenkins 1994). Additionally, MMSE has been considered to be an
optimal forecasting procedure that minimises the mean-squared forecasting error. In the area of forecasting, an optimal
forecasting model traditionally implies that the forecasting model has minimal mean-squared forecasting errors (Alwan,
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Liu, and Yao 2003). However, the MA and ES forecasting techniques do not generally share this optimal property for a
time series process (Zhang 2004). This paper examines the value of the information on the bullwhip effect and assumes
that the retailer and wholesaler use the optimal MMSE technique to conduct forecasting.5

We assumed that the retailer and the wholesaler adopted the optimal inventory policy, i.e., the order-up-to policy
and the optimal forecasting technique, which in this paper, is the MMSE forecasting technique. The assumption that all
stages in the supply chain use the same inventory policy and forecasting technique allows us to determine the impact of
only demand forecasting without considering the impact of different inventory policies or forecasting techniques
between stages.

5. Three-level supply chain model

Our approach for evaluating the impact of information sharing on the bullwhip effect is as follows. For the given order-
up-to inventory policy and MMSE forecasting technique, we first analyse the retailer’s order quantity. Then, by treating
the retailer’s order quantity as the demand for the wholesaler, we analyse the wholesaler’s order quantity for three infor-
mation settings (i.e., no information sharing, end-demand and order information, and end-demand information). In Sec-
tion 6, we derive the bullwhip effect expressions under the three information settings and evaluate the reduction in the
bullwhip effect that is associated with information sharing.

The expressions for the ordering decisions of the retailer and wholesaler will be developed. These expressions will
allow us to evaluate the value of information sharing on bullwhip reductions.

5.1 Retailer’s ordering decision

When considering the retailer’s ordering decision, substituting Equation (5) into Equation (3) with zi ¼ 0 when i ¼ 1,
the retailer’s order quantity q1t at the beginning of period t can be rewritten as follows:

q1t ¼ D̂L1
t � D̂L1

t�1 þ dt�1: ð6Þ

We now derive the expression for the retailer’s order-up-to level D̂L1
t . Using the MMSE technique, it has been shown

that the MMSE forecast is the conditional expectation that is given to previous observations (Box and Jenkins 1994). If

d̂tþi is the demand forecast of period t þ i (i ¼ 0; 1; 2; � � �) that is made at the end of period t � 1, then for the AR (1)

demand process, the MMSE forecast of d̂tþi is represented as Eðdtþi dt�1j Þ (Lee, So, and Tang 2000; Alwan, Liu, and Yao
2003; Zhang 2004; Agrawal, Sengupta, and Shanker 2009; Sodhi and Tang 2011). However, this paper considers a
price-sensitive demand function in which the price follows an AR (1) process. If p̂tþi is the market price forecast of
period t þ i that is made at the end of period t � 1, then for the AR (1) pricing process, p̂tþi is the future price that is con-
ditional upon the actual price that is observed up to period t � 1, i.e., Eðptþi pt�1j Þ. By recursively applying Equation (2),
it is simple to show that the following equation is true:

ptþi ¼ lþ qptþi�1 þ gtþi ¼ ð1þ qÞlþ q2ptþi�2 þ ðqgtþi�1 þ gtþiÞ
¼ � � � ¼ 1�qiþ1

1�q lþ qiþ1pt�1 þ
Pi
j¼0

qi�jgtþj:
ð7Þ

Thus,

p̂tþi ¼ Eðptþi pt�1j Þ ¼ 1� qiþ1

1� q
lþ qiþ1pt�1: ð8Þ

Then, we can derive the demand forecast of period t þ i as follows:

d̂tþi ¼ a� bp̂tþi ¼ a� b
1� qiþ1

1� q
lþ qiþ1pt�1

� �
: ð9Þ

Thus, the expression for the order-up-to level, D̂L1
t , can be given as follows:
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D̂L1
t ¼

XL1�1

i¼0

d̂tþi ¼ L1ld þ
bq

1� q
�L1l� bq�L1pt�1; ð10Þ

where �L1 ¼ 1�qL1
1�q . Then from Equation (6), we can achieve the following equation6:

q1t ¼ �bq�L1ðpt�1 � pt�2Þ þ dt�1: ð11Þ

We assumed that the retailer and wholesaler used the MMSE technique to conduct forecasting. It is well known that
the MMSE forecast is provided by the conditional expectation (Box and Jenkins 1994). To determine the conditional
expectation of the retailer’s order quantity q1tþi (i ¼ 1; 2; � � �) at the beginning of period t þ i and given the retailer’s
observed order q1t , an expression of q1tþi in terms of q1t can be developed. By using Equations (1), (2), and (11), we
determine the retailer’s order quantity for the period t þ 1 as follows:

q1tþ1 ¼ ð1� qÞld þ qq1t þ et � qet�1 � b�L1þ1gt þ bq�L1gt�1: ð12Þ

The repeated use of Equation (12) yields the following equation:

q1tþi ¼ ð1� qiÞld þ qiq1t þ etþi�1 � qiet�1 � b�L1þ1gtþi�1

�bqð�L1þ1 � �L1Þgtþi�2 � bq2ð�L1þ1 � �L1Þgtþi�3 � � � � � bqi�1ð�L1þ1 � �L1Þgt þ bqi�L1gt�1;
i ¼ 1; 2; � � � : ð13Þ

The expression of q1tþi in terms of q1t given in Equation (13) allows us to determine the conditional expectation of
the retailer’s order quantity q1tþi, which is useful in analysing the wholesaler’s order quantities. Additionally, because the
retailer’s order quantity corresponds to the wholesaler’s demand and the errors et and gt in Equation (12) are i.i.d. nor-
mally distributed and not contemporaneously correlated, it can be shown that the wholesaler’s demand is also normally
distributed. Therefore, the wholesaler also adopts the optimal inventory policy that minimises its total expected holding
and shortage costs.

5.2 Wholesaler’s ordering decision

After the wholesaler receives and ships the retailer’s order q1t at the beginning of period t, the wholesaler immediately
places an order q2t with the manufacturer at the beginning of period t to bring its inventory position to an order-up-to
level of y2t . Thus, from Equations (4) and (5) and with zi ¼ 0 when i ¼ 2, the order q2t that is placed by the wholesaler
at the beginning of period t can be expressed as:

q2t ¼ D̂L2
t � D̂L2

t�1 þ q1t ; ð14Þ

where D̂L2
t is an estimate of the wholesaler’s mean lead-time demand.

The demands seen by the wholesaler are the orders placed by the retailer. To determine the wholesaler’s order quan-
tity q2t , the wholesaler must estimate the mean lead-time demand D̂L2

t . To characterise the demand information flow
through the supply chain, we consider the following three information settings: no information sharing, end-demand and
order information, and end-demand information. We assume that the parameters of the demand process, i.e., a, b, l, q,
r2, and d2, are common knowledge to the retailer and wholesaler, but demand and price realisations are the private
knowledge of the retailer.7 When no information sharing occurs, the wholesaler bases its forecast lead-time demand
solely on the order quantity q1t that is placed by the retailer without knowing the customer demand and market price
information. When information is shared throughout the supply chain, two possible, additional methods exist for the
wholesaler to estimate the lead-time demand. One method is based on the retailer’s order quantity q1t and the end cus-
tomer demand and price information. We refer to this information-sharing setting as end-demand and order information.
The other possible method for forecasting is to use only the history of the end customer demand and market price. We
refer to this information-sharing setting as end-demand information.

We can compare the bullwhip effect under the two information-sharing settings with that under no information shar-
ing and evaluate the reduction in the bullwhip effect that is associated with information sharing. Furthermore, by using
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the reduction in the bullwhip effect that is associated with information sharing, we deduce which of the two informa-
tion-sharing settings more significantly eliminates the increase in variability. This method allows the wholesaler to
choose a better information-sharing setting.

5.2.1 No information sharing

When no information sharing occurs, the wholesaler only receives information about the retailer’s order quantity q1t .
Moreover, the error terms et�1 and gt�1 are realised at the beginning of period t but are unknown to the wholesaler
when she determines her order-up-to level y2t . The wholesaler treats the error terms et�1 and gt�1 in Equation (13) as

variables and determines its forecasting lead-time demand D̂L2;NIS
t using the MMSE technique, which is based on q1t ,

without knowing the demand and price information. Furthermore, when no information is shared, q̂1;NIStþi represents the

retailer’s ordering forecast of period t þ i (i ¼ 1; 2; � � �); thus, from Equation (13), q̂1;NIStþi can be given as follows:

q̂1;NIStþi ¼ Eðq1tþi q
1
t

�� Þ ¼ ð1� qiÞld þ qiq1t : ð15Þ

Because the retailer’s order quantity corresponds to the wholesaler’s demand, the total shipment quantity over the
wholesaler lead time is equal to the total orders that are placed by the retailer over the lead-time period t þ 1, . . .,
t þ L2. Thus,

D̂L2;NIS
t ¼

XL2
i¼1

q̂1;NIStþi ¼ ðL2 � q�L2Þld þ q�L2q
1
t ; ð16Þ

where �L2 ¼ 1�qL2
1�q . Lastly, when no information is shared and from Equation (14), the wholesaler’s order quantity q2;NISt

at the beginning of period t can be expressed as follows:

q2;NISt ¼ D̂L2;NIS
t � D̂L2;NIS

t�1 þ q1t ¼ �L2þ1q
1
t � q�L2q

1
t�1: ð17Þ

5.2.2 End-demand and order information

In the case of end-demand and order information, the wholesaler knows the retailer’s order quantity q1t and the error
terms et�1 and gt�1 through the sharing of information about the previous observations dt�1; dt�2; � � � and pt�1; pt�2; � � �.8
Thus, the wholesaler determines its forecasting lead-time demand D̂L2;IS1

t using an MMSE technique based on the retai-

ler’s ordering quantity q1t and the end customer demand and price information. If q̂1;IS1tþi is the retailer’s ordering forecast
of period t þ i (i ¼ 1; 2; � � �), the error terms et�1 and gt�1 in Equation (13) become constants through the sharing of the

customer demand and price information. Thus, from Equation (13), q̂1;IS1tþi can be given as follows:

q̂1;IS1tþi ¼ Eðq1tþi q
1
t

�� Þ ¼ ð1� qiÞld þ qiq1t � qiet�1 þ bqi�L1gt�1: ð18Þ

Thus,

D̂L2;IS1
t ¼

XL2
i¼1

q̂1;IS1tþi ¼ ðL2 � q�L2Þld þ q�L2q
1
t � q�L2et�1 þ bq�L1�L2gt�1: ð19Þ

Then, from Equation (14), the wholesaler’s order quantity q2;IS1t at the beginning of period t can be expressed as fol-
lows:

q2;IS1t ¼ D̂L2;IS1
t � D̂L2;IS1

t�1 þ q1t
¼ �L2þ1q1t � q�L2q

1
t�1 � q�L2ðet�1 � et�2Þ þ bq�L1�L2ðgt�1 � gt�2Þ:

ð20Þ
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5.2.3 End-demand information

In the case of end-demand information, the wholesaler has complete knowledge of the end customer demands and prices
seen by the retailer through information sharing. Importantly, this information-sharing setting is different from end-
demand and order information. Because the information transferred in the form of orders tends to distort the true
dynamics of the market place, we assume that the wholesaler only uses the actual customer demands and prices to esti-
mate the mean lead-time demand D̂L2;IS2

t . Thus, we have:

D̂L2;IS2
t ¼

XL2�1

i¼0

d̂tþi ¼ L2ld þ
bq

1� q
�L2l� bq�L2pt�1; ð21Þ

where d̂tþi is given by Equation (9).
Then, from Equation (14), the wholesaler’s order quantity q2;IS2t at the beginning of period t can be expressed as fol-

lows:

q2;IS2t ¼ D̂L2;IS2
t � D̂L2;IS2

t�1 þ q1t ¼ �bqð�L1 þ �L2Þðpt�1 � pt�2Þ þ dt�1: ð22Þ

6. The value of information sharing

We have analysed the order quantities of the retailer and the wholesaler with and without information sharing and, in
this section, we compute the bullwhip effect, which is the ratio of the order variance of each stage to the variance of
the end customer demand, under these three information settings. If this ratio is larger than one, then the bullwhip effect
is present. In this section, we show the value of information sharing, which is based on the analytical expressions of the
bullwhip effect, on reducing the bullwhip effect.

6.1 Bullwhip effect at the retailer

Using Equation (11), the measure of the bullwhip effect at the retailer BWE1 is calculated as the ratio of the variance of
the retailer’s order quantity q1t and the customer demand dt, which is given in Theorem 1.

Theorem 1: If the retailer uses the order-up-to inventory policy and the MMSE forecasting technique, the expression of
the bullwhip effect at the retailer is the following:

BWE1 ¼ Varðq1t Þ
VarðdtÞ ¼ 1þ 2b2qð1� qÞ�L1�L1þ1

d2

ð1� q2Þr2 þ b2d2
: ð23Þ

Proof: See Appendix C.

From the expression of the bullwhip effect at the retailer in Theorem 1, we know that BWE1 depends on the following
five parameters: the price sensitivity coefficient b, the price correlation coefficient q, the retailer lead time L1, and the error

term variances r2 and d2. However, the market demand scale a has no effect on BWE1. Note that because the retailer could
directly observe the end customer demand and price information, information sharing does not change the retailer’s order-
ing decision, and therefore does not affect the bullwhip effect at the retailer. Thus, we shall focus on the impact of infor-
mation sharing on the bullwhip effect at the wholesaler.

6.2 Bullwhip effect at the wholesaler

We now develop the expressions for the bullwhip effect at the wholesale level with and without information sharing.
We consider three information settings in this work: no information sharing, end-demand and order information, and
end-demand information.
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6.2.1 Expressions for the bullwhip effect under different information-sharing settings

Using Equations (17), (20), and (22), the measures of the bullwhip effect at the wholesaler BWENIS
2 , BWEIS1

2 , and
BWEIS2

2 under the three information settings are given in Theorems 2, 3, and 4, respectively.

Theorem 2: If the wholesaler uses the order-up-to inventory policy and the MMSE forecasting technique, the expression
of the bullwhip effect at the wholesaler without information sharing is the following:

BWENIS
2 ¼ Varðq2;NISt Þ

VarðdtÞ ¼ 1þ 2q�L2�L2þ1 þ 2b2qð1� qÞ�
�L1�L1þ1 � q

1�q�L2�L2þ1 þ qð3� qÞ�L1�L1þ1�L2�L2þ1

� �
d2

ð1�q2Þr2þb2d2
:

ð24Þ

Proof: See Appendix D.

Theorem 3: If the wholesaler uses the order-up-to inventory policy and the MMSE forecasting technique, the expression
of the bullwhip effect at the wholesaler with end-demand and order information is the following:

BWEIS1
2 ¼ Varðq2;IS1t Þ

VarðdtÞ ¼ 1þ 2b2qð1� qÞ�
ð�L1�L1þ1 þ �L2�L2þ1 þ ð1þ qÞqL1þL2þ1�L1�L2 � ð1� qÞ2�L1�L1þ1�L2�L2þ1Þ d2

ð1�q2Þr2þb2d2
:

ð25Þ

Proof: See Appendix E.

Theorem 4: If the wholesaler uses the order-up-to inventory policy and the MMSE forecasting technique, the expression
of the bullwhip effect at the wholesaler with end-demand information is the following:

BWEIS2
2 ¼ Varðq2;IS2t Þ

VarðdtÞ ¼ 1þ 2b2qð1� qÞð�L1 þ �L2Þð�L1þ1 þ q�L2Þ
d2

ð1� q2Þr2 þ b2d2
: ð26Þ

Proof: See Appendix F.

From Theorems 2, 3, and 4, we know that the bullwhip effect at the wholesaler has no relation to the market
demand scale a. However, this effect depends on the price sensitivity coefficient b, the price correlation coefficient q,
the retailer lead time L1, the wholesaler lead time L2, and the variances r2 and d2. We are interested in comparing the
increase in variability at each stage of the supply chain under the three information settings. Because the bullwhip effect

at the retailer is not affected by information sharing, we focus on the impact of parameters b, q, L1, L2, r2, and d2 on
the bullwhip effect reduction at the wholesale level when evaluating the value of information sharing.

First, we will perform an analytical analysis on the value of information sharing with end-demand and order infor-
mation and end-demand information to understand the impact of model parameters, such as the price sensitivity coeffi-
cient, on reducing the bullwhip effect. Then, we will compare the bullwhip effect under the two information-sharing
settings to gain insights into choosing an appropriate information-sharing setting to restrain the bullwhip effect. In Sec-
tion 7, we provide a numerical study to explain the value of information sharing and a comparison between the two
information-sharing settings.

6.2.2 Bullwhip effect reduction under end-demand and order information

We define the value of information sharing VNIS�IS1 as the percentage of decrease in the bullwhip effect at the wholesale
level due to end-demand and order information, as follows:

VNIS�IS1 ¼ BWENIS
2 � BWEIS1

2

BWENIS
2

� 100%; ð27Þ

where BWENIS
2 and BWEIS1

2 are given by Equations (24) and (25), respectively.
Equation (27) can be illustrated by comparing a strategy where the wholesaler uses its previous period order quantity

and customer demand and price information, such as shared point of sale (POS) data to conduct forecasting on a bench-
mark case when no information is shared. To facilitate this analysis, we assume the retailer lead time L1 is zero.9 If
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L1 ¼ 0, Proposition 1 describes the influence of the model parameters b, L2, r2, and d2 on the value of the end-demand
and order information VNIS�IS1.

10

Proposition 1: For L1 ¼ 0, it follows that:

(1) @ðVNIS�IS1Þ
@b � 0. (2) @ðVNIS�IS1Þ

@L2
� 0. (3) @ðVNIS�IS1Þ

@r2 � 0. (4) @ðVNIS�IS1Þ
@d2

� 0.

Proof: See Appendix G.

Relations (1) and (4) in Proposition 1 indicate that the value of end-demand and order information, VNIS�IS1,

decreases with an increase in the price sensitivity coefficient b and an increase in the overall market shocks d2. How-
ever, Relations (2) and (3) in Proposition 1 show that VNIS�IS1 increases with an increase in the wholesaler lead time L2
and an increase in the demand shocks r2. Because the bullwhip effect at the wholesaler level makes the manufacturer’s
large inventory costs unavoidable, our theoretical analysis implies that the end-demand and order information sharing is

beneficial to the manufacturer, especially when b is small, L2 is long, r2 is large, or d2 is small. These benefits are in
the form of a reduction in the bullwhip effect at the wholesale level. To have the retailer share its demand and price
information with the wholesaler, the manufacturer must provide incentives to the retailer, such as financial incentives
that include price reduction and a better return policy, and operational schemes, which include the vendor managed
inventory (VMI) program, EDI platform, and POS system. However, we note that the manufacturer has incentives to
increase the wholesaler lead time L2 to gain more benefits that are associated with information sharing, which may trig-
ger a non-cooperative behaviour from the wholesaler. We showed in Section 6.1 that information sharing does not
change the retailer’s ordering decision and has no impact on the bullwhip effect at the retailer, while the bullwhip effect
at the retailer mainly provides potential costs for its upstream wholesaler. As such, information sharing does not prove
to have potential benefits to the wholesaler. It is counterintuitive that the wholesaler should estimate its lead-time
demand through information sharing while the manufacturer increases the wholesaler lead time L2. However, this occur-
rence may be a means for the wholesaler to entice the manufacturer to reduce L2, which benefits the wholesaler. There-
fore, the manufacturer and wholesaler may obtain benefits when information sharing and lead time reduction are
implemented together, which has been previously reported by Lee, So, and Tang (2000).

6.2.3 Bullwhip effect reduction under end-demand information

We have conducted a theoretical analysis for the value of information sharing with end-demand and order information.
Similarly, we analyse the value of information sharing with end-demand information. If VNIS�IS2 is the value of informa-
tion sharing because of end-demand information, then the following equation is true:

VNIS�IS2 ¼ BWENIS
2 � BWEIS2

2

BWENIS
2

� 100%; ð28Þ

where BWEIS2
2 is given by Equation (26) in Theorem 4.

Proposition 2 describes the influence of parameters b, L2, r2, and d2 on the value of the end-demand information
VNIS�IS2 when L1 ¼ 0.9

Proposition 2: For L1 ¼ 0, it follows that:

(1) @ðVNIS�IS2Þ
@b � 0. (2) @ðVNIS�IS2Þ

@L2
� 0. (3) @ðVNIS�IS2Þ

@r2 � 0. (4) @ðVNIS�IS2Þ
@d2

� 0.

Proof: Based on Theorems 3 and 4, BWEIS1
2 ¼ BWEIS2

2 when L1 ¼ 0, and VNIS�IS1 ¼ VNIS�IS2. Thus, we can prove
Proposition 2 using the same approach as Proposition 1, but the proof is omitted here.

Similarly, Proposition 2 shows that VNIS�IS2 decreases with an increase in b and d2, and increases with an increase
in L2 and r2. Thus, end-demand information sharing results in a higher percentage of bullwhip reduction at the whole-

saler level when b is small, L2 is long, r2 is large, or d2 is small. If L1 ¼ 0, the value of end-demand and order infor-
mation VNIS�IS1 is equal to that of end-demand information VNIS�IS2, i.e., VNIS�IS1 ¼ VNIS�IS2. An objective of this paper
is to develop insights for choosing an appropriate information-sharing setting to more significantly restrain the bullwhip
effect. If L1 ¼ 0, then no difference exists between the two information-sharing settings. A natural question then arises:
which information-sharing setting should the wholesaler use that will result in a greater benefit when L1 – 0? To

3096 Y. Ma et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 1
9:

52
 0

8 
M

ay
 2

01
5 



answer this question, we compare the bullwhip effect under end-demand and order information BWEIS1
2 with that under

end-demand information BWEIS2
2 . Based on Equations (27) and (28), if BWEIS1

2 � BWEIS2
2 , the value of end-demand

and order information VNIS�IS1 is no less than that of end-demand information VNIS�IS2. Thus, the wholesaler should
adopt the end-demand and order information setting. Likewise, the converse could be analysed in the same way.

6.2.4 Comparison of the bullwhip effect under end-demand and order information with end-demand information

Compared with the bullwhip effect under end-demand information in Theorem 4, the result obtained under end-demand
and order information in Theorem 3 can be interpreted as the amount of bullwhip effect that remains when the whole-
saler uses its previous period order quantity as additional information. Let DBWE ¼ BWEIS1

2 � BWEIS2
2 . Proposition 3

below shows the influence of the model parameters b, L1, L2, r2, and d2 on DBWE.

Proposition 3: It follows that:

(1) �BWE � 0.

(2) @ð�BWEÞ
@b � 0. @ð�BWEÞ

@L1
� 0. @ð�BWEÞ

@L2
� 0. @ð�BWEÞ

@r2 � 0. @ð�BWEÞ
@d2

� 0.

Proof: See Appendix H.

Relation (1) in Proposition 3 implies that the difference DBWE is non-positive. Thus, BWEIS1
2 � BWEIS2

2 , which indi-
cates that VNIS�IS1 � VNIS�IS2. Therefore, the value of end-demand and order information is no less than that of end-
demand information, and the wholesaler should always adopt the end-demand and order information setting. This relation-

ship can be explained as follows. The wholesaler’s order quantity q2;IS1t under end-demand and order information, which is

shown by Equation (20), can also be given as q2;IS1t ¼ �L1þ1�L2þ1dt�1 � qð�L1�L2þ1 þ �L1þ1�L2Þdt�2þ
q2�L1�L2dt�3 � qð�L1�L2þ1 þ �L2Þðet�1 � et�2Þ þ q2�L1�L2ðet�2 � et�3Þ þ bq�L1�L2ðgt�1 � gt�2Þ using the relationship

q1t ¼ �L1þ1dt�1 � q�L1dt�2 � q�L1ðet�1 � et�2Þ; and q2;IS2t , when under end-demand information shown by Equation (22),

can be given as q2;IS2t ¼ ð1þ qð�L1 þ �L2ÞÞdt�1 � qð�L1 þ �L2Þdt�2 � qð�L1 þ �L2Þðet�1 � et�2Þ using Equation (1).
Because the retailer’s order history also contains information about demand and price (despite not reflecting the true
dynamics of the marketplace), when the wholesaler uses its previous-period order quantity as additional demand and price
information, the benefits the manufacturer obtains under end-demand and order information are greater than those under
end-demand information. Relation (2) in Proposition 3 shows that �BWE decreases with an increase in the price sensitivity

coefficient b, the lead times L1 and L2, and the overall market shocks d2, and increases with an increase in the demand
shocks r2. Therefore, compared to the bullwhip effect under end-demand information, the bullwhip effect savings from
adopting the end-demand and order information setting can be very substantial, especially when b is large, L1 is long, L2 is

long, r2 is small, or d2 is large.
To understand the above point, consider the following example. Consider the two three-level supply chains that were

described in Section 3, where each supply chain distributes the same single product. We assume that the customer
demand and price information can be seen by both wholesalers after the information about the POS date is shared. The
first wholesaler, i.e., the wholesaler in the first supply chain, uses the retailer’s previous order quantity and the demand
and price information to conduct forecasting, while the second wholesaler only uses the history demands and prices to
conduct forecasting. In this case, the orders that are placed by the first wholesaler are less variable than those placed by
the second wholesaler, although both supply chains face the same demand process. Therefore, when compared to the
second manufacturer, the first manufacturer benefits more from bullwhip effect reduction at the wholesale level and,
consequently, has a greater incentive to invest in information sharing, especially when b is large, L1 is long, L2 is long,

r2 is small, or d2 is large. However, we have shown that the value of information sharing under the two information set-

tings is significant when b is small, L2 is long, r2 is large, or d2 is small. Therefore, if the two supply chains have been

selling products with a small price sensitivity coefficient b, large demand shocks r2, or small overall market shocks d2,
the first manufacturer is not superior to the second manufacturer when evaluating the information-sharing settings that
are adopted by the two wholesalers, although both manufacturers benefit from information sharing. However, if the
product lead times L1 or L2 are long, both manufacturers benefit from information sharing, but the first manufacturer
benefits more than the second when the two wholesalers adopt different information-sharing settings. Notably, the manu-
facturer has incentives to increase the wholesaler lead time, L2, and motivate the wholesaler to increase the retailer lead
time L1 to gain more benefits. However, doing so may trigger a non-cooperative behaviour between the wholesaler and
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retailer. Therefore, to entice the retailer to share its demand and price information, the manufacturer may need to moti-
vate the wholesaler to respond quickly to the retailer’s order and reduce the wholesaler lead time L2, which benefits all
partners in the supply chain.

Table 1. The values of VNIS�IS1, VNIS�IS2, and �BWE for L1 ¼ L2 ¼ 2 when r2 ¼ d2 ¼ 1.

q

qmax Vmaxb 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

VNIS�IS1 1 19.5313 36.6306 50.0821 59.8493 66.5138 70.7854 73.2413 74.1782 73.0546 0.808 74.1844
(%) 3 19.4679 36.2625 49.2312 58.5078 64.7822 68.7871 71.0737 71.8890 70.5864 0.802 71.8892

5 19.4590 36.2151 49.1297 58.3578 64.5987 68.5844 70.8616 71.6715 70.3580 0.801 71.6716
7 19.4563 36.2012 49.1004 58.3149 64.5465 68.5272 70.8020 71.6105 70.2942 0.801 71.6106
9 19.4552 36.1955 49.0881 58.2970 64.5249 68.5034 70.7772 71.5853 70.2678 0.801 71.5854

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS2 1 10.0402 20.1997 30.2530 39.7683 48.3587 55.7964 61.9836 66.8096 69.5221 0.907 69.5429
(%) 3 3.6950 10.9534 20.6952 31.2434 41.2983 50.1544 57.5273 63.2582 66.5473 0.910 66.5935

5 2.8042 9.7625 19.5548 30.2901 40.5502 49.5822 57.0912 62.9208 66.2720 0.910 66.3218
7 2.5410 9.4152 19.2258 30.0176 40.3377 49.4205 56.9685 62.8262 66.1950 0.910 66.2458
9 2.4303 9.2698 19.0885 29.9041 40.2494 49.3535 56.9177 62.7871 66.1632 0.910 66.2144

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmin �BWEmin

�BWE 1 �0.1311 �0.3253 �0.5736 �0.8497 �1.1049 �1.2664 �1.2427 �0.9517 �0.4104 0.641 �1.2845
3 �0.2351 �0.5761 �0.9950 �1.4299 �1.7849 �1.9391 �1.7758 �1.2445 �0.4782 0.604 �1.9393
5 �0.2510 �0.6140 �1.0571 �1.5126 �1.8773 �2.0251 �1.8389 �1.2759 �0.4846 0.599 �2.0251
7 �0.2558 �0.6253 �1.0756 �1.5370 �1.9044 �2.0502 �1.8571 �1.2848 �0.4864 0.598 �2.0503
9 �0.2578 �0.6301 �1.0835 �1.5473 �1.9159 �2.0607 �1.8647 �1.2885 �0.4872 0.597 �2.0608

Table 2. The values of VNIS�IS1, VNIS�IS2, and �BWE for L1 ¼ 2L2 ¼ 4 when r2 ¼ d2 ¼ 1.

q

qmax Vmaxb 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

VNIS�IS1 1 19.6261 37.2848 51.8487 63.0288 71.0849 76.5353 79.9415 81.7521 82.0150 0.867 82.1450
(%) 3 19.6255 37.2704 51.7776 62.8491 70.7759 76.1203 79.4678 81.2636 81.5277 0.867 81.6590

5 19.6254 37.2685 51.7693 62.8297 70.7448 76.0810 79.4250 81.2209 81.4862 0.868 81.6173
7 19.6254 37.2680 51.7669 62.8241 70.7360 76.0699 79.4131 81.2091 81.4747 0.868 81.6057
9 19.6254 37.2678 51.7659 62.8218 70.7324 76.0654 79.4081 81.2042 81.4700 0.868 81.6009

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS2 1 10.0436 20.2818 30.7010 41.0544 50.9269 59.8718 67.5492 73.7666 78.2226 0.942 79.0278
(%) 3 3.7130 11.2305 21.8468 33.9521 45.9296 56.6568 65.5936 72.6045 77.5112 0.943 78.4144

5 2.8251 10.0723 20.8098 33.1856 45.4275 56.3523 65.4167 72.5030 77.4507 0.943 78.3627
7 2.5628 9.7349 20.5114 32.9674 45.2859 56.2670 65.3674 72.4748 77.4339 0.943 78.3484
9 2.4525 9.5936 20.3870 32.8767 45.2271 56.2317 65.3470 72.4631 77.4270 0.943 78.3425

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmin �BWEmin

�BWE 1 �0.1325 �0.3403 �0.6361 �1.0226 �1.4753 �1.9139 �2.1638 �1.9387 �0.9905 0.714 �2.1684
3 �0.2376 �0.6026 �1.1034 �1.7210 �2.3832 �2.9305 �3.0921 �2.5352 �1.1544 0.679 �3.1069
5 �0.2537 �0.6423 �1.1723 �1.8204 �2.5066 �3.0605 �3.2020 �2.5991 �1.1699 0.675 �3.2240
7 �0.2585 �0.6541 �1.1928 �1.8499 �2.5429 �3.0984 �3.2336 �2.6173 �1.1742 0.674 �3.2581
9 �0.2606 �0.6591 �1.2015 �1.8623 �2.5581 �3.1143 �3.2469 �2.6249 �1.1760 0.673 �3.2724
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7. Numerical analysis

We have conducted a theoretical analysis on the impact of the price sensitivity coefficient b, the lead time L2, and the

error term variances r2 and d2, on the value of information sharing VNIS�IS1 and VNIS�IS2 when L1 ¼ 0. To choose an
information-sharing setting that more significantly restrains the bullwhip effect, we have also compared the bullwhip

Table 3. The values of VNIS�IS1, VNIS�IS2, and �BWE for L1 ¼ L2=2 ¼ 2 when r2 ¼ d2 ¼ 1.

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS1 1 19.7037 37.7207 52.8013 64.4112 72.6963 78.2067 81.5876 83.3580 83.6247 0.868 83.7431
(%) 3 19.6398 37.3450 51.9302 63.0587 71.0102 76.3556 79.6937 81.4790 81.7390 0.867 81.8701

5 19.6308 37.2966 51.8262 62.9074 70.8313 76.1675 79.5078 81.2998 81.5634 0.867 81.6944
7 19.6282 37.2825 51.7962 62.8641 70.7805 76.1144 79.4555 81.2495 81.5142 0.868 81.6452
9 19.6271 37.2766 51.7837 62.8461 70.7594 76.0923 79.4339 81.2287 81.4939 0.868 81.6249

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS2 1 10.1304 20.8359 32.0720 43.2584 53.6616 62.7301 70.2123 76.0753 80.1718 0.941 80.8844
(%) 3 3.7302 11.3361 22.0940 34.3249 46.3632 57.0840 65.9720 72.9193 77.7684 0.943 78.6561

5 2.8317 10.1126 20.9033 33.3254 45.5889 56.5103 65.5560 72.6183 77.5446 0.943 78.4509
7 2.5663 9.7558 20.5598 33.0396 45.3689 56.3482 65.4389 72.5339 77.4820 0.943 78.3936
9 2.4546 9.6064 20.4164 32.9206 45.2776 56.2809 65.3904 72.4990 77.4561 0.943 78.3699

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmin �BWEmin

�BWE 1 �0.1325 �0.3403 �0.6361 �1.0226 �1.4753 �1.9139 �2.1638 �1.9387 �0.9905 0.714 �2.1684
3 �0.2376 �0.6026 �1.1034 �1.7210 �2.3832 �2.9305 �3.0921 �2.5352 �1.1544 0.679 �3.1069
5 �0.2537 �0.6423 �1.1723 �1.8204 �2.5066 �3.0605 �3.2020 �2.5991 �1.1699 0.675 �3.2240
7 �0.2585 �0.6541 �1.1928 �1.8499 �2.5429 �3.0984 �3.2336 �2.6173 �1.1742 0.674 �3.2581
9 �0.2606 �0.6591 �1.2015 �1.8623 �2.5581 �3.1143 �3.2469 �2.6249 �1.1760 0.673 �3.2724

Table 4. The values of VNIS�IS1, VNIS�IS2, and �BWE for L1 ¼ L2 ¼ 2 when r2 ¼ 2d2 ¼ 2.

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS1 1 19.5609 36.8234 50.5773 60.7067 67.7137 72.2678 74.9441 76.0663 75.1826 0.818 76.0975
(%) 3 19.4800 36.3289 49.3763 58.7257 65.0522 69.0885 71.3917 72.2171 70.9330 0.802 72.2175

5 19.4641 36.2423 49.1877 58.4432 64.7029 68.6994 70.9818 71.7946 70.4872 0.801 71.7947
7 19.4591 36.2156 49.1309 58.3595 64.6008 68.5868 70.8641 71.6740 70.3607 0.801 71.6742
9 19.4569 36.2043 49.1068 58.3243 64.5580 68.5397 70.8151 71.6239 70.3082 0.801 71.6240

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS2 1 13.0066 25.0419 35.8154 45.2169 53.2505 59.9817 65.4844 69.7387 72.0870 0.905 72.0983
(%) 3 4.9124 12.6210 22.3251 32.6283 42.3995 51.0052 58.1810 63.7673 66.9650 0.909 67.0064

5 3.3171 10.4453 20.2063 30.8331 40.9754 49.9068 57.3383 63.1118 66.4276 0.910 66.4754
7 2.8150 9.7768 19.5683 30.3014 40.5589 49.5889 57.0963 62.9248 66.2752 0.910 66.3249
9 2.5993 9.4919 19.2983 30.0775 40.3844 49.4560 56.9954 62.8470 66.2119 0.910 66.2624

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmin �BWEmin

�BWE 1 �0.0876 �0.2184 �0.3885 �0.5834 �0.7734 �0.9110 �0.9289 �0.7525 �0.3539 0.663 �0.9411
3 �0.2139 �0.5255 �0.9113 �1.3175 �1.6574 �1.8184 �1.6854 �1.1984 �0.4685 0.610 �1.8200
5 �0.2418 �0.5921 �1.0213 �1.4649 �1.8241 �1.9758 �1.8029 �1.2580 �0.4810 0.602 �1.9759
7 �0.2508 �0.6136 �1.0564 �1.5116 �1.8762 �2.0241 �1.8382 �1.2755 �0.4846 0.599 �2.0241
9 �0.2547 �0.6228 �1.0715 �1.5316 �1.8984 �2.0447 �1.8531 �1.2829 �0.4861 0.598 �2.0447
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effect under end-demand and order information BWEIS1
2 with that under end-demand information BWEIS2

2 and conducted

a theoretical analysis on the influence of parameters b, L1, L2, r2, and d2 on the difference between these two bullwhip

effects �BWE. In this section, we provide a numerical example to illustrate the impacts of b, L1, L2, r2, and d2 on

Table 5. The values of VNIS�IS1, VNIS�IS2, and �BWE for L1 ¼ 2L2 ¼ 4 when r2 ¼ 2d2 ¼ 2.

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS1 1 19.6264 37.2924 51.8912 63.1499 71.3176 76.8795 80.3665 82.2181 82.5020 0.868 82.6242
(%) 3 19.6256 37.2730 51.7896 62.8775 70.8221 76.1796 79.5332 81.3291 81.5917 0.867 81.7232

5 19.6254 37.2696 51.7740 62.8407 70.7624 76.1032 79.4492 81.2450 81.5096 0.867 81.6408
7 19.6254 37.2685 51.7694 62.8299 70.7452 76.0814 79.4255 81.2214 81.4867 0.868 81.6178
9 19.6254 37.2681 51.7674 62.8254 70.7380 76.0723 79.4157 81.2117 81.4772 0.868 81.6082

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS2 1 13.0064 25.0637 35.9923 45.8404 54.6893 62.5370 69.3035 74.8753 78.9336 0.941 79.6521
(%) 3 4.9269 12.8553 23.3359 35.0753 46.6778 57.1166 65.8633 72.7603 77.6047 0.943 78.4943

5 3.3364 10.7362 21.4017 33.6216 45.7123 56.5246 65.5166 72.5602 77.4848 0.943 78.3918
7 2.8359 10.0862 20.8221 33.1947 45.4334 56.3559 65.4188 72.5041 77.4514 0.943 78.3633
9 2.6209 9.8094 20.5771 33.0154 45.3170 56.2857 65.3782 72.4809 77.4376 0.943 78.3515

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmin �BWEmin

�BWE 1 �0.0885 �0.2284 �0.4308 �0.7021 �1.0327 �1.3767 �1.6175 �1.5329 �0.8542 0.734 �1.6396
3 �0.2162 �0.5497 �1.0106 �1.5856 �2.2130 �2.7480 �2.9347 �2.4413 �1.1310 0.685 �2.9419
5 �0.2444 �0.6194 �1.1325 �1.7631 �2.4356 �2.9860 �3.1392 �2.5628 �1.1611 0.677 �3.1569
7 �0.2535 �0.6418 �1.1714 �1.8192 �2.5051 �3.0590 �3.2007 �2.5984 �1.1697 0.675 �3.2226
9 �0.2575 �0.6515 �1.1883 �1.8433 �2.5348 �3.0900 �3.2267 �2.6133 �1.1732 0.674 �3.2506

Table 6. The values of VNIS�IS1, VNIS�IS2, and �BWE for L1 ¼ L2=2 ¼ 2 when r2 ¼ 2d2 ¼ 2.

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS1 1 19.7336 37.9175 53.3082 65.2749 73.8625 79.5758 83.0690 84.8981 85.2337 0.872 85.3229
(%) 3 19.6521 37.4128 52.0788 63.2785 71.2734 76.6352 79.9721 81.7491 82.0050 0.867 82.1360

5 19.6360 37.3244 51.8856 62.9936 70.9329 76.2742 79.6131 81.4012 81.6627 0.867 81.7938
7 19.6309 37.2972 51.8275 62.9092 70.8334 76.1697 79.5100 81.3018 81.5654 0.867 81.6965
9 19.6288 37.2856 51.8029 62.8737 70.7916 76.1260 79.4670 81.2605 81.5250 0.868 81.6560

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS2 1 13.1224 25.8107 37.8775 48.9636 58.7095 66.9060 73.5289 78.6620 82.2224 0.940 82.8191
(%) 3 4.9582 13.0495 23.7958 35.7767 47.5025 57.9367 66.5953 73.3730 78.1075 0.942 78.9678

5 3.3491 10.8141 21.5835 33.8947 46.0289 56.8358 65.7917 72.7887 77.6712 0.943 78.5669
7 2.8426 10.1272 20.9174 33.3372 45.5980 56.5170 65.5608 72.6218 77.5472 0.943 78.4533
9 2.6250 9.8346 20.6355 33.1025 45.4173 56.3838 65.4646 72.5524 77.4958 0.943 78.4061

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmin �BWEmin

�BWE 1 �0.0885 �0.2284 �0.4308 �0.7021 �1.0327 �1.3767 �1.6175 �1.5329 �0.8542 0.734 �1.6396
3 �0.2162 �0.5497 �1.0106 �1.5856 �2.2130 �2.7480 �2.9347 �2.4413 �1.1310 0.685 �2.9419
5 �0.2444 �0.6194 �1.1325 �1.7631 �2.4356 �2.9860 �3.1392 �2.5628 �1.1611 0.677 �3.1569
7 �0.2535 �0.6418 �1.1714 �1.8192 �2.5051 �3.0590 �3.2007 �2.5984 �1.1697 0.675 �3.2226
9 �0.2575 �0.6515 �1.1883 �1.8433 �2.5348 �3.0900 �3.2267 �2.6133 �1.1732 0.674 �3.2506
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VNIS�IS1 and VNIS�IS2 when L1 – 0. Additionally, the impact of the price correlation coefficient q on VNIS�IS1, VNIS�IS2,
and �BWE has also been investigated through numerical analysis.

In our numerical example, we set the parameters b 2 f1; 3; 5; 7; 9g and q 2 f0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9g
when different combinations of lead times are considered, L1 ¼ L2 ¼ 2, L1 ¼ 2L2 ¼ 4, and L1 ¼ L2=2 ¼ 2, and we

Table 7. The values of VNIS�IS1, VNIS�IS2, and �BWE for L1 ¼ L2 ¼ 2 when r2 ¼ d2=2 ¼ 1.

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS1 1 19.5036 36.4631 49.6806 59.1968 65.6506 69.7694 72.1216 72.9803 71.7482 0.804 72.9817
(%) 3 19.4610 36.2258 49.1525 58.3913 64.6395 68.6295 70.9086 71.7196 70.4085 0.801 71.7197

5 19.4563 36.2010 49.0998 58.3140 64.5454 68.5260 70.8007 71.6092 70.2928 0.801 71.6094
7 19.4549 36.1939 49.0849 58.2923 64.5191 68.4971 70.7707 71.5786 70.2608 0.801 71.5787
9 19.4544 36.1910 49.0787 58.2833 64.5082 68.4852 70.7583 71.5659 70.2475 0.801 71.5660

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS2 1 7.2725 15.9931 25.7431 35.6219 44.8392 52.9279 59.6817 64.9512 67.9476 0.908 67.9793
(%) 3 3.0075 10.0321 19.8113 30.5034 40.7169 49.7093 57.1878 62.9954 66.3327 0.910 66.3817

5 2.5354 9.4079 19.2189 30.0118 40.3332 49.4171 56.9660 62.8242 66.1934 0.910 66.2442
7 2.4007 9.2309 19.0519 29.8738 40.2259 49.3356 56.9042 62.7767 66.1547 0.910 66.2060
9 2.3446 9.1574 18.9826 29.8167 40.1815 49.3019 56.8787 62.7570 66.1388 0.910 66.1903

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmin �BWEmin

�BWE 1 �0.1745 �0.4308 �0.7530 �1.1010 �1.4063 �1.5735 �1.4952 �1.0968 �0.4460 0.624 �1.5809
3 �0.2473 �0.6053 �1.0429 �1.4937 �1.8563 �2.0057 �1.8247 �1.2689 �0.4832 0.599 �2.0057
5 �0.2559 �0.6256 �1.0760 �1.5376 �1.9050 �2.0507 �1.8575 �1.2850 �0.4865 0.598 �2.0508
7 �0.2583 �0.6314 �1.0855 �1.5501 �1.9189 �2.0635 �1.8667 �1.2895 �0.4874 0.597 �2.0636
9 �0.2593 �0.6338 �1.0895 �1.5553 �1.9247 �2.0688 �1.8706 �1.2914 �0.4878 0.597 �2.0690

Table 8. The values of VNIS�IS1, VNIS�IS2, and �BWE for L1 ¼ 2L2 ¼ 4 when r2 ¼ d2=2 ¼ 1.

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS1 1 19.6258 37.2782 51.8149 62.9399 70.9271 76.3179 79.6883 81.4871 81.7478 0.867 81.8793
(%) 3 19.6254 37.2689 51.7712 62.8340 70.7517 76.0896 79.4345 81.2303 81.4953 0.868 81.6264

5 19.6254 37.2680 51.7668 62.8240 70.7359 76.0697 79.4128 81.2088 81.4745 0.868 81.6055
7 19.6254 37.2677 51.7656 62.8212 70.7314 76.0642 79.4068 81.2029 81.4687 0.868 81.5997
9 19.6253 37.2676 51.7651 62.8201 70.7296 76.0619 79.4043 81.2005 81.4664 0.868 81.5973

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS2 1 7.2810 16.1510 26.4863 37.5433 48.3755 58.1872 66.5039 73.1362 77.8325 0.942 78.6900
(%) 3 3.0277 10.3344 21.0427 33.3567 45.5390 56.4196 65.4557 72.5253 77.4640 0.943 78.3740

5 2.5573 9.7278 20.5052 32.9629 45.2829 56.2652 65.3664 72.4742 77.4335 0.943 78.3481
7 2.4230 9.5559 20.3538 32.8526 45.2115 56.2223 65.3416 72.4600 77.4251 0.943 78.3409
9 2.3671 9.4845 20.2911 32.8069 45.1820 56.2045 65.3314 72.4542 77.4217 0.943 78.3380

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmin �BWEmin

�BWE 1 �0.1764 �0.4506 �0.8350 �1.3251 �1.8777 �2.3779 �2.6034 �2.2344 �1.0765 0.697 �2.6036
3 �0.2500 �0.6332 �1.1565 �1.7977 �2.4785 �3.0311 �3.1773 �2.5849 �1.1664 0.676 �3.1976
5 �0.2586 �0.6544 �1.1932 �1.8505 �2.5436 �3.0992 �3.2343 �2.6177 �1.1743 0.674 �3.2588
7 �0.2611 �0.6605 �1.2038 �1.8656 �2.5622 �3.1185 �3.2504 �2.6269 �1.1765 0.673 �3.2762
9 �0.2621 �0.6630 �1.2082 �1.8719 �2.5699 �3.1265 �3.2571 �2.6307 �1.1774 0.673 �3.2834
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considered three simulation scenarios r2 ¼ d2 ¼ 1, r2 ¼ 2d2 ¼ 2, and r2 ¼ d2=2 ¼ 1. Given these parameters, we
computed the value of end-demand and order information VNIS�IS1 using Equation (27), the value of end-demand infor-
mation VNIS�IS2 using Equation (28), and the difference between the two bullwhip effects �BWE using the equation
�BWE ¼ BWEIS1

2 � BWEIS2
2 , in which BWEIS1

2 is given by Equation (25) and BWEIS2
2 is given by Equation (26). The

results are presented in Tables 1–9. Tables 1–3 show the impact of q on VNIS�IS1, VNIS�IS2, and �BWE for

L1 ¼ L2 ¼ 2, L1 ¼ 2L2 ¼ 4, and L1 ¼ L2=2 ¼ 2, respectively, when b ¼ 1, 3, 5, 7, and 9 for the scenario r2 ¼ d2 ¼ 1.

Tables 4–6 show the corresponding results for the scenario r2 ¼ 2d2 ¼ 2, and Tables 7–9 show the corresponding

results for the scenario r2 ¼ d2=2 ¼ 1. These tables show that for the given values of L1, L2, and b under different sce-
narios, the values of information sharing VNIS�IS1, and VNIS�IS2 reach their maximum value (denoted as Vmax) at a cer-
tain value qmax, whereas the difference �BWE reaches its minimum value �BWEmin at qmin. In our numerical example,
as the value of q increases from zero to one, VNIS�IS1 and VNIS�IS2 increase with an increase in q from zero to qmax,

Table 9. The values of VNIS�IS1, VNIS�IS2, and �BWE for L1 ¼ L2=2 ¼ 2 when r2 ¼ d2=2 ¼ 1.

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS1 1 19.6758 37.5498 52.3903 63.7535 71.8562 77.2663 80.6105 82.3763 82.6293 0.867 82.7576
(%) 3 19.6329 37.3076 51.8496 62.9413 70.8711 76.2093 79.5490 81.3394 81.6021 0.867 81.7333

5 19.6281 37.2822 51.7956 62.8632 70.7794 76.1132 79.4545 81.2484 81.5132 0.868 81.6442
7 19.6268 37.2750 51.7804 62.8413 70.7537 76.0864 79.4281 81.2231 81.4885 0.868 81.6195
9 19.6262 37.2720 51.7741 62.8322 70.7431 76.0754 79.4172 81.2127 81.4783 0.868 81.6093

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmax Vmax

VNIS�IS2 1 7.3387 16.5140 27.3643 38.9144 50.0253 59.8618 68.0246 74.4265 78.9031 0.942 79.7028
(%) 3 3.0368 10.3896 21.1711 33.5490 45.7614 56.6377 65.6482 72.6849 77.5941 0.943 78.4962

5 2.5606 9.7483 20.5526 33.0336 45.3643 56.3448 65.4364 72.5321 77.4807 0.943 78.3924
7 2.4247 9.5664 20.3781 32.8888 45.2532 56.2630 65.3775 72.4897 77.4493 0.943 78.3636
9 2.3681 9.4909 20.3058 32.8289 45.2073 56.2292 65.3531 72.4721 77.4363 0.943 78.3517

q

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 qmin �BWEmin

�BWE 1 �0.1764 �0.4506 �0.8350 �1.3251 �1.8777 �2.3779 �2.6034 �2.2344 �1.0765 0.697 �2.6036
3 �0.2500 �0.6332 �1.1565 �1.7977 �2.4785 �3.0311 �3.1773 �2.5849 �1.1664 0.676 �3.1976
5 �0.2586 �0.6544 �1.1932 �1.8505 �2.5436 �3.0992 �3.2343 �2.6177 �1.1743 0.674 �3.2588
7 �0.2611 �0.6605 �1.2038 �1.8656 �2.5622 �3.1185 �3.2504 �2.6269 �1.1765 0.673 �3.2762
9 �0.2621 �0.6630 �1.2082 �1.8719 �2.5699 �3.1265 �3.2571 �2.6307 �1.1774 0.673 �3.2834

Figure 1. The impact of the lead times L1 and L2 on VNIS�IS1 and VNIS�IS2 when b ¼ 5, q ¼ 0:5, and r2 ¼ d2.
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and these values decrease with an increase in q from qmax to one. In addition, �BWE decreases with an increase in q
from zero to qmin and increases with an increase in q from qmin to one. Given a particular scenario, such as

L1 ¼ L2 ¼ 2 when r2 ¼ d2 ¼ 1, Vmax decreases as b increases when investigating the value of end-demand and order
information VNIS�IS1. Additionally, when we investigate the value of end-demand information VNIS�IS2, although Vmax

decreases as b increases, qmax increases as b increases. In contrast, we observe that qmin and �BWEmin decrease as b
increases when we investigate the difference, �BWE.

As derived in Propositions 1 and 2, if L1 ¼ 0, VNIS�IS1 and VNIS�IS2 decrease with respect to b and d2 and increase
with respect to L2 and r2. It can be clearly shown in our numerical example that VNIS�IS1 and VNIS�IS2 still decrease

with an increase in b if L1 – 0; see, for example, the scenario r2 ¼ d2 ¼ 1. If we compare the scenario r2 ¼ d2 ¼ 1

with that of r2 ¼ 2d2 ¼ 2, such as in Tables 1 and 4, we can see that VNIS�IS1 and VNIS�IS2 increase if r2 increases from

1 to 2 when d2 ¼ 1. Likewise, when comparing the scenario r2 ¼ d2 ¼ 1 with that of r2 ¼ d2=2 ¼ 1, we observe that

VNIS�IS1 and VNIS�IS2 decrease if d2 increases from 1 to 2 when r2 ¼ 1. Given a particular scenario, such as

r2 ¼ d2 ¼ 1, if we compare the value in Table 1 for L1 ¼ L2 ¼ 2 with that in Table 3 for L1 ¼ L2=2 ¼ 2, we can see
that VNIS�IS1 and VNIS�IS2 increase if L2 increases from 2 to 4. Additionally, Figure 1 shows the impact of L1 and L2 on

the value of information sharing VNIS�IS (i.e., VNIS�IS1 and VNIS�IS2) when b ¼ 5, q ¼ 0:5, and r2 ¼ d2. It can be shown
that VNIS�IS1 and VNIS�IS2 increase with an increase in L1 and L2.

11 Therefore, our numerical analysis when L1 – 0 is
consistent with the theoretical findings that are presented in Propositions 1 and 2 when L1 ¼ 0. In addition, we observe
in Tables 1–9 that a negative �BWE decreases as b increases, decreases as L1 increases, decreases as L2 increases,

increases as r2 increases, and decreases as d2 increases. Figure 2 shows a similar observation for the impact of L1 and

L2 on �BWE when b ¼ 5, q ¼ 0:5, and r2 ¼ d2. These observations also confirm our analytical findings that are pre-
sented in Proposition 3.

We used numerical experiments to analyse the impact of the price correlation coefficient q on the values of two
information-sharing settings VNIS�IS1 and VNIS�IS2, and on the bullwhip effect difference �BWE under the two settings.
Our numerical analysis indicates that the value of information sharing is significant for products with a highly correlated
pricing process, especially when the product price sensitivity coefficient b is small, the retailer (or wholesaler) lead time

L1 (or L2) is long, the demand shocks r2 are high, or the overall market shocks d2 are low. For example, when b ¼ 1,

L1 ¼ L2 ¼ 2, and r2 ¼ d2 ¼ 1, the value of end-demand and order information VNIS�IS1 reaches its maximum value of
74.1844% when qmax ¼ 0:808, while the value of end-demand information VNIS�IS2 reaches its maximum value of
69.5429% when qmax ¼ 0:907.12 Additionally, we analysed the bullwhip effect difference �BWE that is associated with
end-demand and order information and end-demand information. This numerical analysis indicates that the savings from
using end-demand and order information can be very substantial for a medial, larger price correlation coefficient value.

Figure 2. The impact of the lead times L1 and L2 on �BWE when b ¼ 5, q ¼ 0:5, and r2 ¼ d2.
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For example, when b ¼ 1, L1 ¼ L2 ¼ 2, and r2 ¼ d2 ¼ 1, the savings reaches its highest value of 1.2845 when
qmin ¼ 0:641.13 Therefore, the wholesaler should adopt end-demand and order information, i.e., use the retailer’s previ-
ous order history and customer demand and price information to conduct forecasting for products with a medial, more

highly correlated pricing process, especially when b is large, L1 is long, L2 is long, r2 is small, or d2 is large. In this sit-
uation, the manufacturer benefits more from using end-demand and order information than from using end-demand
information.

From the above analyses, several important managerial insights are revealed. When the underlying, overall market
product pricing process is medially (or even highly) correlated over time and the overall market shocks are small, bene-
fits from information sharing will occur. In addition, the wholesaler should adopt end-demand and order information,
especially when the product price sensitivity coefficient is large or the demand shocks are low. In contrast, for products
with a medially (or even highly) correlated pricing process and high overall market shocks, if the product price sensitiv-
ity coefficient is small or the demand shocks are high, a need for information sharing will exist, and the wholesaler
should adopt end-demand and order information. Furthermore, we have showed that if the lead times L1 or L2 are long,
the manufacturer would have a greater incentive to invest in information sharing and, therefore, adopt end-demand and
order information.

8. Conclusions

Information sharing is frequently suggested to reduce the bullwhip effect in a supply chain. In this paper, we have con-
sidered three information settings: no information, end-demand and order information, and end-demand information
sharing. We derived the analytical expressions of the bullwhip effect under the three information settings and performed
a theoretical analysis to determine the value of the two information-sharing settings (i.e., end-demand and order informa-
tion and end-demand information) in respect to the percentage of reduction in the bullwhip effect. We also compared
the bullwhip effect under the two information-sharing settings to gain insights into choosing an appropriate information
setting to restrain this effect. The results showed that: (1) because the market demand scale has no effect on the bull-
whip effect, it does not influence the value of information sharing; (2) the value of information sharing is significant
when the underlying overall market pricing process is highly correlated over time, the overall market shocks are low,
the product price sensitivity coefficient is small, the demand shocks specific to the retailer are high, or when the retailer
(or wholesaler) lead time is long; (3) the value of adopting end-demand and order information is always greater than
when adopting end-demand information. Thus, the wholesaler should use the retailer’s previous order history and cus-
tomer demand and price information to conduct forecasting, especially when the underlying overall market pricing pro-
cess is medially (or even highly) correlated over time, the overall market shocks are high, the product price sensitivity
coefficient is large, the demand shocks are low, or when the retailer (or wholesaler) lead time is long.

The key implication of our findings is that, if the overall market shocks for products with a medially (or even
highly) correlated pricing process are small, great benefits from information sharing will occur. Thus, the retailer should
share its customer demand and price information with its upstream businesses. In addition, the wholesaler should adopt
end-demand and order information, especially when the product price sensitivity coefficient is large or the demand
shocks are low. However, if the overall market shocks are high when the product price sensitivity coefficient is small or
the demand shocks are high, information sharing is needed and the wholesaler should adopt end-demand and order
information. Additionally, if the retailer (or wholesaler) lead time is long, the manufacturer will have a greater incentive
to invest in information sharing and adopt end-demand and order information. These findings provide valuable insights
to the partners along a supply chain when evaluating information-sharing programs.

The research presented here can lead to several future works that focus on the empirical validation of our analytical
results or theoretical extensions of our model. Empirically, firm-level demand data, order data, and macroeconomic
industry-level pricing data can be collected to estimate the key parameters of our model, which can be used to validate
our findings on the impact of information sharing on the bullwhip effect. Theoretically, our model considers only the
order-up-to inventory policy and the MMSE forecasting technique, and other inventory policies and forecasting tech-
niques still require further study. Moreover, because the bullwhip effect may lead to misguided inventory levels and
make upstream, large inventory costs unavoidable, the methods for quantifying the impact of information sharing on
inventory and expected costs in a supply chain is another future direction of study.
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Notes
1. Zhang and Burke (2011) considered an AR (1) pricing process to investigate compound causes of the bullwhip effect by analys-

ing an inventory system with multiple price-sensitive demand streams. However, this paper uses the AR (1) pricing process to
study the impact of information sharing on the bullwhip effect.

2. Note that xt is the function of two types of error terms, the demand shocks that are specific to the retailer, et , and overall market
shocks, gt . The reduced demand model is not an AR (1) or more general ARMA demand process.

3. We use the stationary AR (1) pricing process to simplify our exposition. However, when the pricing process is nonstationary due
to its increasing (or decreasing) trend or business cycle, the mean price, lt , may vary over time. However, if the nonstationarity
is as simple as the mean price varying in a known way (lt = constant), e.g., because of the business cycle, then we can use the
same approach to analyse when the pricing process is nonstationary, i.e., pt � lt ¼ qðpt�1 � lt�1Þ þ gt . The results presented in
this paper remain unchanged. The demand model with the AR (1) demand process also used this approach to deal with a non-
stationary situation (Sodhi and Tang 2011).

4. Our model can be extended to when zi – 0. However, it can be shown that the estimation of the standard deviation of the Li per-
iod forecasting error is independent of time, and the results in this paper remain unchanged. For a better understanding, we refer
readers to read through this paper and then see Appendix B for a more detailed discussion of these contents.

5. The assumption that is presented here can be extended to analyse different forecasting techniques, such as the MA or ES tech-
niques. However, because our intent is to analyse the value of information sharing on the bullwhip effect, we shall restrict our
attention to only the optimal forecasting technique, i.e., the MMSE technique. A similar assumption has also been made by Lee,
So, and Tang (2000), Hosoda and Disney (2006), and Sodhi and Tang (2011).

6. The retailer’s order quantity can also be written as q1t ¼ �L1þ1dt�1 � q�L1dt�2 � q�L1ðet�1 � et�2Þ when using Equations (1) and
(11), and where �L1þ1 ¼ ð1� qL1þ1Þ=ð1� qÞ. Thus, the wholesaler can utilise this equation to estimate the actual value of dt and
then utilise Equation (1) to estimate the actual value of pt. However, because it is complicated to conduct a theoretical analysis
on the value of information sharing when the wholesaler utilises historical order quantities to estimate the actual demand and
price, we shall limit the scope of our paper by assuming that the wholesaler would not utilise these equations to estimate the
actual value of dt and pt. A similar assumption has also been adopted by Lee, So, and Tang (2000) and Ali and Boylan (2011).

7. In reality, neither the retailer nor the wholesaler knows the exact values of the parameters of the demand process. However, the
retailer can use the statistical software and the historical demand and price data to estimate the parameters of the demand process
with sufficient accuracy. In addition, as shown in Lee, So, and Tang (2000), it is also reasonable that the wholesaler knows the
demand process parameters, as information about the underlying demand process can be communicated to the wholesaler by dis-
cussing periodically with the retailer, or the wholesaler can be provided with historic demand and price data from which the demand
process parameters can be readily deduced. A similar assumption has also been adopted by Gaur, Giloni, and Seshadri (2005).

8. We can rewrite Equations (1) and (2) as dt�1 ¼ a� bpt�1 þ et�1 and pt�1 ¼ lþ qpt�2 þ gt�1. Thus, et�1 can be given as
dt�1 � ða� bpt�1Þ and gt�1 can be given as pt�1 � ðlþ qpt�2Þ.

9. The assumption presented here can be extended to analyse when L1 6¼ 0; however, the analysis would become more complex.
Because our intent is to obtain basic managerial insight, we shall restrict our attention to the assumption that L1 = 0. We will ana-
lyse the influence of b, L1, L2, r2, and d2 on the value of information sharing using the numerical analysis in Section 7, when
L1 6¼ 0.

10. We did not conduct a theoretical analysis on the impact of the price correlation coefficient, q, on the value of information sharing.
However, it can be shown that the value of information sharing reaches a maximum value at a certain q value, and we will con-
duct a numerical analysis in Section 7 to understand this point.

11. Note, there is one special case in our numerical example where VNIS–IS2 decreases when L1 increases from 2 to 4; see the scenario
r2 ¼ 2d2 ¼ 2 for b= 1 and for q ¼ 0:1 when comparing the values in Table 4 with those in Table 5. However, for the other
cases, VNIS–IS2 increases with L1.

12. For large values of L1 and L2, qmax is close to one under the two information-sharing settings. Numerical results for these cases
are not given in this paper as tabular forms. For example, VNIS–IS1 reaches its maximum when qmax ¼ 0:970, and VNIS–IS2 reaches
its maximum when qmax ¼ 0:990 when b = 1, L1 =L2 = 10, and r2 ¼ d2 ¼ 1.

13. Also note that qmin increases when the lead times L1 and L2 are increased. For example, �BWEmin reaches its minimum value,
i.e., the savings reach their highest value when qmin ¼ 0:875 when b = 1, L1 =L2 = 10, and r2 ¼ d2 ¼ 1.
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Appendix A

It is necessary to obtain analytical results based on the assumptions that (1) excess inventory can be freely returned, i.e., qit can be
negative, and (2) backorders are allowed. However, because these assumptions will not be appropriate in many retail settings, we are
interested in determining whether these assumptions significantly affect the variance of order quantities. We use simulation to estimate
the value of the order variance when excess inventory cannot be returned and backorders are not allowed, and we show the simula-
tion results of the retailer’s ordering process as an example to simplify our exposition. The results of the wholesaler’s ordering pro-
cess are not reported here.

In our simulation example, the demand function model is specified by a ¼ 1000 and b ¼ 1, 2, 3, 4, 5, 6, 7, 8, and 9. The pricing
process is specified by l ¼ 10 and q ¼ 0:1, 0.3, 0.5, 0.7, and 0.9; and we fixed L1 ¼ 2 and r2 ¼ d2 ¼ 25. Given these parameters,
we first generated the random price and the corresponding demand for 1000 consecutive time periods, then we computed simulated
estimates of the amplified value of the variance of the retailer’s order quantity, which were assigned models B1, B2, B3, and B4 for
the following four scenarios

(1) Orders can be negative and backorders are allowed, i.e., q1t ¼ y1t � ðy1t�1 � dt�1Þ.
(2) Orders cannot be negative and backorders are allowed, i.e., q1t ¼ maxfy1t � ðy1t�1 � dt�1Þ; 0g.
(3) Orders can be negative and no backorders are allowed, i.e., q1t ¼ y1t �maxfy1t�1 � dt�1; 0g.
(4) Orders cannot be negative and no backorders are allowed, i.e., q1t ¼ maxfy1t �maxfy1t�1 � dt�1; 0g; 0g.

Note that the first model is the model that was analysed in this paper.
Figure 3 compares the variance amplification of the orders in these four models for various values of b when q ¼ 0:1, 0.3, 0.5,

0.7, and 0.9. According to Figures 3(a), (b), (c), and (d), we can see that there is no difference among these four models if we com-
pare the variance amplification for all given values of b in our simulation setting. In addition, we note from Figure 3(e) that for small
values of b, the four lines are also indistinguishable, which indicates that very little difference occurs between the variance amplifica-
tion of the orders in each case. However, we see that for large values of b, the models in which orders cannot be negative (i.e., mod-
els B2 and B4) have slightly lower variance amplification than the models in which orders can be negative (i.e., models B1 and B3).
Additionally, for large values of b, the models with no backorders (i.e., models B3 and B4) have a slightly lower variance amplifica-
tion than the models with backorders (i.e., models B1 and B2). Based on additional (unreported) simulations given different values of
L1, r2, and d2, we can derive similar tendencies. We conclude that, in most cases, very little difference occurs between the variance
amplification of the retailer’s orders in these four models. This finding implies that the assumptions that excess inventory can be
returned and backorders are allowed do not significantly affect the variance of the order quantities when compared to models in which
(1) excess inventory cannot be returned or (2) no backorders are allowed.

Appendix B

The estimation of the standard deviation of the Li period forecasting error can be given as follows:

r̂Li
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðDLi

t � D̂Li
t Þ

q
; i ¼ 1; 2: ðB:1Þ

Proof of the retailer’s order quantity when z1 – 0 remains the same as that when z1 ¼ 0.
When i ¼ 1, Ma et al. (2013) demonstrated that the variance of the lead-time demand forecasting error is independent of time

and can be expressed as:

ðr̂L1
t Þ2 ¼ VarðDL1

t � D̂L1
t Þ ¼ L1r

2 þ b2

ð1� qÞ2 L1 þ qð1� qL1ÞðqL1þ1 � q� 2Þ
1� q2

� �
d2: ðB:2Þ

Thus, r̂L1t is also independent of time and can be expressed as:
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(a)

(b)

(c)

(d)

(e)

Figure 3. Varðq1t Þ=VarðdtÞ for a ¼ 1000, l ¼ 10, L1 ¼ 2, and r2 ¼ d2 ¼ 25 when q ¼ 0:1:; 0.3, 0.5, 0.7, and 0.9.
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r̂L1
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1r2 þ b2

ð1� qÞ2 L1 þ qð1� qL1ÞðqL1þ1 � q� 2Þ
1� q2

� �
d2

s
: ðB:3Þ

Therefore, if we substitute Equation (5) into Equation (3), the retailer’s order quantity when z1 – 0 remains the same as that
when z1 ¼ 0, and the results in this paper remain unchanged. �

Proof of the wholesaler’s order quantity when z2 – 0 remains the same as that when z2 ¼ 0.
When i ¼ 2, three information settings are considered in this paper: no information sharing, end-demand and order information,

and end-demand information.
The wholesaler’s demand corresponds to the retailer’s order quantity. Using Equation (13), thus,

DL2
t ¼PL2

i¼1
q1tþi ¼ ðL2 � q�L2Þld þ q�L2q

1
t þ

PL2
i¼1

etþi�1 � q�L2et�1

� b
PL2
i¼1

ð�L1þ1gtþi�1 þ qð�L1þ1 � �L1Þgtþi�2 þ q2ð�L1þ1 � �L1Þgtþi�3 þ � � � þ qi�1ð�L1þ1 � �L1ÞgtÞ þ bq�L1�L2gt�1

¼ ðL2 � q�L2Þld þ q�L2q
1
t þ

PL2
i¼1

etþi�1 � q�L2et�1

� bð�L1þL2gt þ �L1þL2�1gtþ1 þ � � � þ �L1þ2gtþL2�2 þ �L1þ1gtþL2�1Þ þ bq�L1�L2gt�1

¼ ðL2 � q�L2Þld þ q�L2q
1
t þ

PL2
i¼1

etþi�1 � q�L2et�1 � b
PL2
i¼1

�L1þL2�iþ1gtþi�1 þ bq�L1�L2gt�1:

ðB:4Þ
where �L1 ¼ ð1� qL1Þ=ð1� qÞ and �L2 ¼ ð1� qL2Þ=ð1� qÞ.

(1) If there is no information sharing, the forecasting lead-time demand D̂L2;NIS
t can be given as ðL2 � q�L2Þld þ q�L2q

1
t . See

Equation (16). Thus, Equation (B.1) can be expressed as:

r̂L2;NIS
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðDL2

t � D̂L2;NIS
t Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

PL2
i¼1

etþi�1 � q�L2et�1 � b
PL2
i¼1

�L1þL2�iþ1gtþi�1 þ bq�L1�L2gt�1

� �s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 þ q2ð�L2Þ2Þr2 þ b2

PL2
i¼1

ð�L1þL2�iþ1Þ2 þ q2ð�L1Þ2ð�L2Þ2
� �

d2
s

:

ðB:5Þ

(2) If there is end-demand and order information, the forecasting lead-time demand D̂L2 ;IS1
t can be given as

ðL2 � q�L2Þld þ q�L2q
1
t � q�L2et�1 þ bq�L1�L2gt�1. See Equation (19). Thus, Equation (B.1) can be expressed as:

r̂L2;IS1
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðDL2

t � D̂L2;IS1
t Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

PL2
i¼1

etþi�1 � b
PL2
i¼1

�L1þL2�iþ1gtþi�1

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2r2 þ b2

PL2
i¼1

ð�L1þL2�iþ1Þ2d2
s

:
ðB:6Þ

(3) If there is end-demand information, the forecasting lead-time demand D̂L2;IS2
t can be given as L2ld þ bq

1�q�L2l� bq�L2pt�1.
See Equation (21). Thus, Equation (B.1) can be expressed as:
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r̂L2;IS2
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðDL2

t � D̂L2;IS2
t Þ

q
¼


Var q�L2q

1
t þ bq�L2pt�1 þ

PL2
i¼1

etþi�1 � q�L2et�1 � b
PL2
i¼1

�L1þL2�iþ1gtþi�1 þ bq�L1�L2gt�1

� �� �s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ð�L2Þ2Varðq1t Þ þ b2q2ð�L2Þ2VarðptÞ þ ðr̂L2;NIS

t Þ2 þ 2bq2ð�L2Þ2Covðq1t ; pt�1Þ
þ 2q�L2Cov q1t ;

PL2
i¼1

etþi�1 � q�L2et�1 � b
PL2
i¼1

�L1þL2�iþ1gtþi�1 þ bq�L1�L2gt�1

� �
þ 2bq�L2Cov pt�1;

PL2
i¼1

etþi�1 � q�L2et�1 � b
PL2
i¼1

�L1þL2�iþ1gtþi�1 þ bq�L1�L2gt�1

� �

vuuuuuuut

¼

q2ð�L2Þ2 1þ 2b2qð1� qÞ�L1�L1þ1

d2

ð1�q2Þr2þb2d2

� �
r2
d þ b2q2ð�L2Þ2r2

p þ ðr̂L2;NIS
t Þ2

þ2b2q2ðq2�L1 � �L1þ1Þð�L2Þ2r2
p � 2q2ð�L2Þ2ðr2 þ b2�L1�L1þ1d

2Þ þ 2b2q2�L1ð�L2Þ2d2

vuut

¼

q2ð�L2Þ2 1þ 2b2qð1� qÞ�L1�L1þ1

d2

ð1�q2Þr2þb2d2

� �
r2
d � b2q2ð1þ 2qð1� qÞ�L1Þð�L2Þ2r2

p

þ ðr̂L2;NIS
t Þ2 � 2q2ð�L2Þ2r2 � 2b2q3ð�L1Þ2ð�L2Þ2d2

s
;

ðB:7Þ

where

Varðq1t Þ ¼ 1þ 2b2qð1� qÞ�L1�L1þ1
d2

ð1� q2Þr2 þ b2d2

� �
r2
d ðsee Equationð23ÞÞ;

Covðq1t ; pt�1Þ ¼ Covð�bq�L1ðpt�1 � pt�2Þ þ dt�1; pt�1Þ

¼ � bq�L1r
2
p þ bq�L1Covðpt�1; pt�2Þ þ Covðdt�1; pt�1Þ

¼ � bq�L1r
2
p þ bq2�L1r

2
p þ Covða� bpt�1 þ et�1; pt�1Þ

¼ bðq2�L1 � �L1þ1Þr2
p;

Cov q1t ;
XL2
i¼1

etþi�1 � q�L2et�1 � b
XL2
i¼1

�L1þL2�iþ1gtþi�1 þ bq�L1�L2gt�1

 !

¼ Cov q1t ;
XL2
i¼1

etþi�1

 !
� q�L2Covðq1t ; et�1Þ � bCov q1t ;

XL2
i¼1

�L1þL2�iþ1gtþi�1

 !
þ bq�L1�L2Covðq1t ; gt�1Þ

¼ �q�L2r
2 � b2q�L1�L1þ1�L2d

2;

Cov pt�1;
PL2
i¼1

etþi�1 � q�L2et�1 � b
PL2
i¼1

�L1þL2�iþ1gtþi�1 þ bq�L1�L2gt�1

� �

¼ bq�L1�L2Covðpt�1; gt�1Þ ¼ bq�L1�L2d
2;

where

q1t ¼ �bq�L1ðpt�1 � pt�2Þ þ dt�1 ðsee Equationð11ÞÞ;

International Journal of Production Research 3111

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 1
9:

52
 0

8 
M

ay
 2

01
5 



Cov q1t ;
XL2
i¼1

etþi�1

 !
¼ Cov �bq�L1ðpt�1 � pt�2Þ þ dt�1;

XL2
i¼1

etþi�1

 !

¼ Cov dt�1;
XL2
i¼1

etþi�1

 !
¼ Cov a� bpt�1 þ et�1;

XL2
i¼1

etþi�1

 !
¼ 0;

Covðq1t ; et�1Þ ¼ Covð�bq�L1ðpt�1 � pt�2Þ þ dt�1; et�1Þ

¼ Covðdt�1; et�1Þ ¼ Covða� bpt�1 þ et�1; et�1Þ ¼ r2;

Cov q1t ;
XL2
i¼1

�L1þL2�iþ1gtþi�1

 !

¼ Cov �bq�L1ðpt�1 � pt�2Þ þ dt�1;
XL2
i¼1

�L1þL2�iþ1gtþi�1

 !

¼ Cov dt�1;
XL2
i¼1

�L1þL2�iþ1gtþi�1

 !
¼ Cov a� bpt�1 þ et�1;

XL2
i¼1

�L1þL2�iþ1gtþi�1

 !
¼ 0;

Covðq1t ; gt�1Þ ¼ Covð�bq�L1ðpt�1 � pt�2Þ þ dt�1; gt�1Þ
¼ Covða� b�L1þ1pt�1 þ bq�L1pt�2 þ et�1; gt�1Þ
¼ � b�L1þ1Covðpt�1; gt�1Þ ¼ � b�L1þ1d

2:

It can be shown from Equations (B.5), (B.6), and (B.7) that r̂L2;NISt , r̂L2;IS1t , and r̂L2;IS2t are all independent of time. Therefore, if
we substitute Equation (5) into Equation (4), the wholesaler’s order quantity when z2–0 remains the same as that when z2 ¼ 0, and
the results in this paper remain unchanged. �

Appendix C

Proof: The variance of the retailer’s order quantity can be derived from Equation (11) as follows:

Varðq1t Þ ¼ b2q2ð�L1Þ2Varðpt�1 � pt�2Þ þ Varðdt�1Þ � 2bq�L1Covðdt�1; pt�1 � pt�2Þ; ðC:1Þ

where

Varðpt�1 � pt�2Þ ¼ 2VarðptÞ � 2Covðpt�1; pt�2Þ ¼ 2ð1� qÞVarðptÞ ¼ 2d2=ð1þ qÞ; ðC:2Þ

Covðdt�1; pt�1 � pt�2Þ ¼ Covða� bpt�1 þ et�1; pt�1 � pt�2Þ
¼ �bVarðptÞ þ bCovðpt�1; pt�2Þ ¼ �bð1� qÞVarðptÞ ¼ �bd2=ð1þ qÞ:

ðC:3Þ

Substituting Equations (C.2) and (C.3) into Equation (C.1) and dividing both sides of Equation (C.1) by VarðdtÞ, and because
Varðdt�1Þ ¼ VarðdtÞ ¼ r2 þ b2d2=ð1� q2Þ, we can prove Theorem 1. This completes the proof. �
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Appendix D

Proof: The variance of the order quantity without information sharing can be derived from Equation (17) as follows:

Varðq2;NISt Þ ¼ ð�L2þ1Þ2Varðq1t Þ þ q2ð�L2 Þ2Varðq1t�1Þ � 2q�L2�L2þ1Covðq1t ; q1t�1Þ
¼ ðð�L2þ1Þ2 þ q2ð�L2Þ2ÞVarðq1t Þ � 2q�L2�L2þ1Covðq1t ; q1t�1Þ;

ðD:1Þ

where

Covðq1t ; q1t�1Þ ¼ Covðð1� qÞld þ qq1t�1 þ et�1 � qet�2 � b�L1þ1gt�1 þ bq�L1gt�2; q
1
t�1Þ

¼ qVarðq1t Þ þ Covðq1t�1; et�1Þ � qCovðq1t�1; et�2Þ � b�L1þ1Covðq1t�1; gt�1Þ þ bq�L1Covðq1t�1; gt�2Þ
¼ qVarðq1t Þ � qr2 � b2q�L1�L1þ1d

2;

ðD:2Þ

where

q1t ¼ ð1� qÞld þ qq1t�1 þ et�1 � qet�2 � b�L1þ1gt�1 þ bq�L1gt�2;

Covðq1t�1; et�1Þ ¼ Covð�bq�L1ðpt�2 � pt�3Þ þ dt�2; et�1Þ ¼ Covðdt�2; et�1Þ
¼ Covða� bpt�2 þ et�2; et�1Þ ¼ 0;

Covðq1t�1; et�2Þ ¼ Covð�bq�L1ðpt�2 � pt�3Þ þ dt�2; et�2Þ ¼ Covðdt�2; et�2Þ
¼ Covða� bpt�2 þ et�2; et�2Þ ¼ Covðet�2; et�2Þ ¼ r2;

Covðq1t�1; gt�1Þ ¼ Covð�bq�L1 ðpt�2 � pt�3Þ þ dt�2; gt�1Þ ¼ Covðdt�2; gt�1Þ
¼ Covða� bpt�2 þ et�2; gt�1Þ ¼ 0;

Covðq1t�1; gt�2Þ ¼ Covð�bq�L1ðpt�2 � pt�3Þ þ dt�2; gt�2Þ
¼ �bq�L1Covðpt�2; gt�2Þ þ Covðdt�2; gt�2Þ
¼ �bq�L1Covðpt�2; gt�2Þ þ Covða� bpt�2 þ et�2; gt�2Þ
¼ �bð1þ q�L1ÞCovðpt�2; gt�2Þ ¼ �b�L1þ1d

2:

Substituting Equation (D.2) into Equation (D.1), and dividing both sides of Equation (D.1) by VarðdtÞ, we can prove Theorem 2
using Equation (23). This completes the proof. �

Appendix E

Proof: The variance of the order quantity under end-demand and order information can be derived from Equation (20) as follows:

Varðq2;IS1t Þ ¼ ð�L2þ1Þ2Varðq1t Þ þ q2ð�L2Þ2Varðq1t�1Þ þ q2ð�L2Þ2Varðet�1 � et�2Þ þ b2q2ð�L1Þ2ð�L2Þ2Varðgt�1 � gt�2Þ
� 2q�L2�L2þ1Covðq1t ; q1t�1Þ � 2q�L2�L2þ1Covðq1t ; et�1 � et�2Þ þ 2bq�L1�L2�L2þ1Covðq1t ; gt�1 � gt�2Þ
þ 2q2ð�L2Þ2Covðq1t�1; et�1 � et�2Þ � 2bq2�L1ð�L2Þ2Covðq1t�1; gt�1 � gt�2Þ

¼ ðð�L2þ1Þ2 þ q2ð�L2Þ2ÞVarðq1t Þ þ 2q2ð�L2Þ2r2 þ 2b2q2ð�L1Þ2ð�L2Þ2d2 � 2q�L2�L2þ1Covðq1t ; q1t�1Þ
� 2q�L2�L2þ1ðCovðq1t ; et�1Þ � Covðq1t ; et�2ÞÞ þ 2bq�L1�L2�L2þ1ðCovðq1t ; gt�1Þ � Covðq1t ; gt�2ÞÞ
þ 2q2ð�L2Þ2ðCovðq1t�1; et�1Þ � Covðq1t�1; et�2ÞÞ � 2bq2�L1ð�L2 Þ2ðCovðq1t�1; gt�1Þ � Covðq1t�1; gt�2ÞÞ;

ðE:1Þ
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where

Covðq1t ; q1t�1Þ ¼ qVarðq1t Þ � qr2 � b2q�L1�L1þ1d
2;

Covðq1t ; et�1Þ ¼ Covð�bq�L1 ðpt�1 � pt�2Þ þ dt�1; et�1Þ ¼ Covðdt�1; et�1Þ
¼ Covða� bpt�1 þ et�1; et�1Þ ¼ r2;

Covðq1t ; et�2Þ ¼ Covð�bq�L1 ðpt�1 � pt�2Þ þ dt�1; et�2Þ ¼ Covðdt�1; et�2Þ
¼ Covða� bpt�1 þ et�1; et�2Þ ¼ 0;

Covðq1t ; gt�1Þ ¼ Covð�bq�L1ðpt�1 � pt�2Þ þ dt�1; gt�1Þ
¼ �bq�L1Covðpt�1; gt�1Þ þ Covða� bpt�1 þ et�1; gt�1Þ
¼ �bð1þ q�L1 ÞCovðpt�1; gt�1Þ ¼ �b�L1þ1d

2;

Covðq1t ; gt�2Þ ¼ Covð�bq�L1ðpt�1 � pt�2Þ þ dt�1; gt�2Þ
¼ �bq�L1Covðpt�1 � pt�2; gt�2Þ þ Covða� bpt�1 þ et�1; gt�2Þ
¼ bqð1� qÞ�L1d

2 � bqd2 ¼ bqðð1� qÞ�L1 � 1Þd2;

Covðq1t�1; et�1Þ ¼ 0; Covðq1t�1; et�2Þ ¼ r2; Covðq1t�1; gt�1Þ ¼ 0; Covðq1t�1; gt�2Þ ¼ �b�L1þ1d
2:

Substituting the above equations into Equation (E.1) and dividing VarðdtÞ on both sides of Equation (E.1), we can prove
Theorem 3 using Equation (23). This completes the proof. �

Appendix F

Proof: The variance of the order quantity under end-demand information can be derived from Equation (22) as follows:

Varðq2;IS2t Þ ¼ b2q2ð�L1 þ �L2Þ2Varðpt�1 � pt�2Þ þ Varðdt�1Þ
� 2bqð�L1 þ �L2 ÞCovðdt�1; pt�1 � pt�2Þ; ðF:1Þ

where

Varðpt�1 � pt�2Þ ¼ 2d2=ð1þ qÞ;

see Equation (C.2), and

Covðdt�1; pt�1 � pt�2Þ ¼ �bd2=ð1þ qÞ;

see Equation (C.3).
Substituting the above two equations into Equation (F.1) and dividing both sides of Equation (F.1) by VarðdtÞ, and because

Varðdt�1Þ ¼ VarðdtÞ ¼ r2 þ b2d2=ð1� q2Þ, we can prove Theorem 4. This completes the proof. �
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Appendix G

Proof of Proposition 1, Relation (1). @ðVNIS�IS1Þ
@b � 0 for L1 ¼ 0.

VNIS�IS1can be derived from Equation (27) as follows:

VNIS�IS1 ¼ f1ðq; L2Þ � f2ðb; q; r2; d2Þ
1þ f1ðq; L2Þ � f2ðb; q; r2; d2Þ þ b2

1þqf1ðq; L2Þ � f3ðb; q; r2; d2Þ; ðG:1Þ

where f1ðq; L2Þ ¼ 2qð1� q2Þ�L2�L2þ1, f2ðb; q; r2; d2Þ ¼ r2

ð1�q2Þr2þb2d2
, and f3ðb; q; r2; d2Þ ¼ d2

ð1�q2Þr2þb2d2
.

Thus, @ðVNIS�IS1Þ
@b ¼ �2bð1þqÞð1þqþf1ðq;L2ÞÞf1ðq;L2Þr2d2

½ð1þqÞð1�q2þf1ðq;L2ÞÞr2þb2ð1þqþf1ðq;L2ÞÞd2�2 � 0: This completes the proof for relation (1). �

Proof of Proposition 1, Relation (2). @ðVNIS�IS1Þ
@L2

� 0 for L1 ¼ 0.
VNIS�IS1; which is shown by Equation (G.1), can be rewritten as:

VNIS�IS1 ¼ f2ðb; q; r2; d2Þ
1

2qð1�q2Þ�L2�L2þ1
þ f2ðb; q; r2; d2Þ þ b2

1þq � f3ðb; q; r2; d2Þ:

It is easy to see that @ðVNIS�IS1Þ
@L2

� 0: This completes the proof for Relation (2). �

Proof of Proposition 1, Relation (3). @ðVNIS�IS1Þ
@r2 � 0 for L1 ¼ 0 .

Using Equation (G.1), it can be shown that:

@ðVNIS�IS1Þ
@r2

¼ b2ð1þ qÞð1þ qþ f1ðq; L2ÞÞf1ðq; L2Þd2
½ð1þ qÞð1� q2 þ f1ðq; L2ÞÞr2 þ b2ð1þ qþ f1ðq; L2ÞÞd2�2

� 0:

This completes the proof for Relation (3). �

Proof of Proposition 1, Relation (4). @ðVNIS�IS1Þ
@d2

� 0 for L1 ¼ 0 .
Using Equation (G.1), it can be shown that:

@ðVNIS�IS1Þ
@d2

¼ �b2ð1þ qÞð1þ qþ f1ðq; L2ÞÞf1ðq; L2Þr2

½ð1þ qÞð1� q2 þ f1ðq; L2ÞÞr2 þ b2ð1þ qþ f1ðq; L2ÞÞd2�2
� 0:

This completes the proof for Relation (4). �

Appendix H

Proof of Proposition 3, Relation (1). �BWE � 0.

�BWE can be derived as follows:

�BWE ¼ g1ðqÞ � g2ðq; L1; L2Þ � g3ðb; q; r2; d2Þ; ðH:1Þ

where g1ðqÞ ¼ 2qð1� qÞ, g2ðq; L1; L2Þ ¼ ðð1þ qÞqL1þL2þ1 � 2qÞ�L1�L2 � ð1� qÞ2�L1�L1þ1�L2�L2þ1, and g3ðb; q; r2; d2Þ ¼
b2d2

ð1�q2Þr2þb2d2
.

Thus,

DBWE � g1ðqÞ � g3ðb; q; r2; d2Þ � ½ðð1þ qÞq� 2qÞ�L1�L2 � ð1� qÞ2�L1�L1þ1�L2�L2þ1�
¼ �g1ðqÞ � g3ðb; q; r2; d2Þ � ð1� qÞ�L1�L2ðqþ ð1� qÞ�L1þ1�L2þ1Þ � 0:
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This completes the proof for Relation (1). �

Proof of Proposition 3, Relation (2). @ð�BWEÞ
@b � 0. @ð�BWEÞ

@L1
� 0. @ð�BWEÞ

@L2
� 0. @ð�BWEÞ

@r2 � 0. @ð�BWEÞ
@d2

� 0 .
Note that g2ðq; L1; L2Þ � 0 in Equation (H.1). Thus,

@ð�BWEÞ
@b

¼ g1ðqÞ � g2ðq; L1; L2Þ � @ðg3ðb; q; r
2; d2ÞÞ

@b
� 0:

@ð�BWEÞ
@L1

¼ g1ðqÞ � g3ðb; q; r2; d2Þ � @ðg2ðq; L1; L2ÞÞ
@L1

¼ g1ðqÞ � g3ðb; q; r2; d2Þ � lnðqÞ
ð1� qÞ2ð1� qL2ÞðqL1 þ 3qL1þ1 � 2q2L1þ1ð1þ qL2ÞÞ

� g1ðqÞ � g3ðb; q; r2; d2Þ � lnðqÞ
ð1� qÞ2ð1� qL2ÞðqL1 þ 3qL1þ1 � 2qL1þ1ð1þ 1ÞÞ

¼ g1ðqÞ � g3ðb; q; r2; d2Þ � qL1 � ð1� qL2Þ � lnðqÞ
1� q

� 0:

@ð�BWEÞ
@L2

� g1ðqÞ � g3ðb; q; r2; d2Þ � qL2 � ð1� qL1Þ � lnðqÞ
1� q

� 0:

@ð�BWEÞ
@r2

¼ g1ðqÞ � g2ðq; L1; L2Þ � @ðg3ðb; q; r
2; d2ÞÞ

@r2
� 0:

@ð�BWEÞ
@d2

¼ g1ðqÞ � g2ðq; L1; L2Þ � @ðg3ðb; q; r
2; d2ÞÞ

@d2
� 0:

This completes the proof for Relation (2). �
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