148 research outputs found

    Personalized Recommendation for Balancing Content Generation and Usage on Two-Sided Entertainment Platforms

    Get PDF
    Online entertainment platforms such as Youtube host a vast amount of user-generated content (UGC). The unique feature of two-sided UGC entertainment platforms is that creators’ content generation and users’ content usage can influence each other. However, traditional recommender systems often emphasize content usage but ignore content generation, leading to a misalignment between these two goals. To address the challenge, this paper proposes a prescriptive uplift framework to balance content generation and usage through personalized recommendations. Specifically, we first predict the heterogeneous treatment effects (HTEs) of recommended contents on creators’ content generation and users’ content usage, then consider these two predicted HTEs simultaneously in an optimization model to determine the recommended contents for each user. Using a large-scale real-world dataset, we demonstrate that the proposed recommendation method better balances content generation and usage and brings a 42% increase in participants’ activity compared to existing benchmark methods

    Proposing a novel comprehensive evaluation model for the coal burst liability in underground coal mines considering uncertainty factors

    Get PDF
    Coal burst is a severe hazard that can result in fatalities and damage of facilities in underground coal mines. To address this issue, a robust unascertained combination model is proposed to study the coal burst hazard based on an updated database. Four assessment indexes are used in the model, which are the dynamic failure duration (DT), elastic energy index (WET), impact energy index (KE) and uniaxial compressive strength (RC). Four membership functions, including linear (L), parabolic (P), S and Weibull (W) functions, are proposed to measure the uncertainty level of individual index. The corresponding weights are determined through information entropy (EN), analysis hierarchy process (AHP) and synthetic weights (CW). Simultaneously, the classification criteria, including unascertained cluster (UC) and credible identification principle (CIP), are analyzed. The combination algorithm, consisting of P function, CW and CIP (P-CW-CIP), is selected as the optimal classification model in function of theory analysis and to train the samples. Ultimately, the established ensemble model is further validated through test samples with 100% accuracy. The results reveal that the hybrid model has a great potential in the coal burst hazard evaluation in underground coal mines. © 202

    A Decision Tree Approach for Assessing and Mitigating Background and Identity Disclosure Risks

    Get PDF
    The Facebook/Cambridge Analytica data scandal shows a type of privacy threat where an adversary attacks on a massive number of people without prior knowledge about their background information. Existing studies typically assume that the adversary knew the background information of the target individuals. This study examines the disclosure risk issue in privacy breaches without such an assumption. We define the background disclosure risk and re-identification risk based on the notion of prior and conditional probabilities respectively, and integrate the two risk measures into a composite measure using the Minimum Description Length principle. We then develop a decision-tree pruning algorithm to find an appropriate group size considering the tradeoff between disclosure risk and data utility. Furthermore, we propose a novel tiered generalization method for anonymizing data at the group level. An experimental study has been conducted to demonstrate the effectiveness of our approach

    Testing the relationship between constraints management and capacity utilization of tea processing firms: Evidence from Kenya

    Get PDF
    AbstractDespite having one of the many studies in constraints management and capacity utilization, there is dearth of the same in the tea processing firms. The purpose of this study was to link constraints management to capacity utilization of tea processing firms by focusing on a Kenyan developing economy. Specifically the study determines the relationship between constraints management and capacity utilization of tea processing firms in Kenya. A multiple linear regression and correlation models were performed on a sample that included 84 firms operating in the Kenyan tea industry for the period 2008–2012. The study established that the relationship between constraints management and the firm’s capacity utilization is significant and positive

    Soil chemistry, metabarcoding, and metabolome analyses reveal that a sugarcane—Dictyophora indusiata intercropping system can enhance soil health by reducing soil nitrogen loss

    Get PDF
    IntroductionGreater amounts of fertilizer are applied every year to meet the growing demand for food. Sugarcane is one of the important food sources for human beings.MethodsHere, we evaluated the effects of a sugarcane—Dictyophora indusiata (DI) intercropping system on soil health by conducting an experiment with three different treatments: (1) bagasse application (BAS process), (2) bagasse + DI (DIS process), and (3) the control (CK). We then analyzed soil chemistry, the diversity of soil bacteria and fungi, and the composition of metabolites to clarify the mechanism underlying the effects of this intercropping system on soil properties.Results and discussionSoil chemistry analyses revealed that the content of several soil nutrients such as nitrogen (N) and phosphorus (P) was higher in the BAS process than in the CK. In the DIS process, a large amount of soil P was consumed by DI. At the same time, the urease activity was inhibited, thus slowing down the loss of soil in the DI process, while the activity of other enzymes such as β-glucosidase and laccase was increased. It was also noticed that the content of lanthanum and calcium was higher in the BAS process than in the other treatments, and DI did not significantly alter the concentrations of these soil metal ions. Bacterial diversity was higher in the BAS process than in the other treatments, and fungal diversity was lower in the DIS process than in the other treatments. The soil metabolome analysis revealed that the abundance of carbohydrate metabolites was significantly lower in the BAS process than in the CK and the DIS process. The abundance of D(+)-talose was correlated with the content of soil nutrients. Path analysis revealed that the content of soil nutrients in the DIS process was mainly affected by fungi, bacteria, the soil metabolome, and soil enzyme activity. Our findings indicate that the sugarcane–DIS intercropping system can enhance soil health

    Consistent Ontologies Evolution Using Graph Grammars

    Get PDF
    Ontologies are often used for the meta-modelling of dynamic domains, therefore it is essential to represent and manage their changes and to adapt them to new requirements. Due to changes, an ontology may become invalid and non-interpretable. This paper proposes the use of the graph grammars to formalize and manage ontologies evolution. The objective is to present an a priori approach of inconsistencies resolutions to adapt the ontologies and preserve their consistency. A framework composed of different graph rewriting rules is proposed and presented using the AGG (Algebraic Graph Grammar) tool. As an application, the article considers the EventCCAlps ontology developed within the CCAlps European project

    Configuration of Coupling Methanol Steam Reforming over Cu-Based Catalyst in a Synthetic Palladium Membrane for One-Step High Purity Hydrogen Production

    Get PDF
    Methanol steam reforming coupled with an efficient hydrogen purification technology to produce high purity hydrogen that feeds for hydrogen fuel cells is an attractive approach to realizing distributed power generation. However, the harmony of catalytic reforming and hydrogen separation with respect to thermodynamics is still an issue. In this work, in order to construct an integrated methanol steam reforming (MSR) reactor for high purity hydrogen production, CuCe/Al2O3 was synthesized by a hydrothermal-impregnated method and a Pd membrane supported by a porous ceramic using the electroless plating method. The results revealed that the catalytic activity and high temperature stability for methanol steam reforming were evidently improved by tuning the copper dispersion, porous structure and the crystal phase. The coupling range with palladium membrane operating temperature was widened. CuCe/Al2O3 presented an excellent stability with a better carbon deposition resistance for the long-term tests than Cu/Al2O3, which exhibited 836.68 μmol/gcat. min of H2 production with low carbon deposition (3.38 wt%) and lower CO emission (0.48 vol%). A 10 μm thick Pd membrane that was deposited on the ceramic support displayed dense and even surface morphology. The effect of palladium membrane structure on hydrogen separation was analyzed. In addition, the influence of temperature on coupling was discussed. Ultimately, high purity of H2 (99.36 vol%) was achieved at 400 °C by integrating the Pd membrane reactor with methanol steam reforming. The internal temperature distribution of the reactor and the effects of feeding conditions were also investigated. This work might offer certain reference for the development of the future distributed integrated hydrogen power generation system, especially in the application of electric vehicles and on-site electricity

    Interleukin-35 Inhibits TNF-α-Induced Osteoclastogenesis and Promotes Apoptosis via Shifting the Activation From TNF Receptor-Associated Death Domain (TRADD)–TRAF2 to TRADD–Fas-Associated Death Domain by JAK1/STAT1

    Get PDF
    Over-activated osteoclasts derived from myeloid or peripheral blood monocytes by inflammatory cytokines results in osteoporosis, osteoarthritis, and other bone erosion-related diseases. Interleukin 35 (IL-35) is a novel anti-inflammatory and immunosuppressive factor. This study investigated the effect of IL-35 on TNF-α-induced osteoclastogenesis. In the presence of IL-35, this process was detected by Tartrate-Resistant Acid Phosphatase (TRAP) staining, F-actin staining, and bone resorption assays. The effects of IL-35 on TNF-α-induced apoptosis were demonstrated by TUNEL staining, cell viability assays, and flow cytometry. Moreover, a microarray was performed to detect the effect of IL-35 on TNF-α-activated phosphatase kinase. The effect of IL-35 on the TNF-α-mediated activation of NF-κB, MAPK, TRAF2, RIP1, Fas-associated death domain (FADD), and caspase3 was further investigated. In addition, a murine calvarial osteolysis model was established via the subcutaneous injection of TNF-α onto the calvaria, and histological analysis was subsequently performed. As a result, IL-35 inhibited TNF-α-induced osteoclast formation and bone resorption in vitro and osteolysis calvaria in vivo. NFATc1, c-fos, and TRAP were downregulated by IL-35 through the inhibition of NF-κB and MAPK, during which JAK1/STAT1 was activated. Moreover, based on TUNEL staining and flow cytometry, IL-35 was shown to enhance TNF-α-induced osteoclast apoptosis. Meanwhile, FADD and cleaved-caspase 3 were increased in cells treated with TNF-α and IL-35, whereas the DNA-binding activity of NF-κB was increased in TNF-α-treated cells, but was decreased in cells treated with both TNF-α and IL-35. In conclusion, IL-35 inhibits TNF-α-induced osteoclastogenesis and promotes apoptosis by activating JAK1/STAT1 and shifting activation from TNF receptor-associated death domain (TRADD)-TRAF2/RIP1-NF-κB to TRADD-FADD-caspase 3 signaling
    • …
    corecore