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Abstract 

The Facebook/Cambridge Analytica data scandal shows a type of privacy threat where 
an adversary attacks on a massive number of people without prior knowledge about 
their background information. Existing studies typically assume that the adversary 
knew the background information of the target individuals. This study examines the 
disclosure risk issue in privacy breaches without such an assumption. We define the 
background disclosure risk and re-identification risk based on the notion of prior and 
conditional probabilities respectively, and integrate the two risk measures into a 
composite measure using the Minimum Description Length principle. We then develop a 
decision-tree pruning algorithm to find an appropriate group size considering the 
tradeoff between disclosure risk and data utility. Furthermore, we propose a novel 
tiered generalization method for anonymizing data at the group level. An experimental 
study has been conducted to demonstrate the effectiveness of our approach. 

Keywords:  data privacy, decision trees, background disclosure, identity disclosure 
 

Introduction 

The recent developments in big data technologies have facilitated the sharing of personal data in 
numerous application areas, such as database marketing, healthcare data sharing, social media data 
analysis, and data sharing among supply-chain partners. However, sharing personal data for business use 
often raises concerns about personal privacy. Governments around the world have increasingly toughened 
the laws for privacy protection. European Union has recently introduced the General Data Protection 
Regulation (GDPR) (EU 2016), which requires data owner organizations obtain consent from individual 
consumers when their identifiable data are to be shared with a third party. Despite the tightened privacy 
laws, repeated privacy invasion cases continue to cause outrage among the public. Recently, the social 
media giant Facebook acknowledged that over 87 million users were affected in a data privacy scandal 
carried out by Cambridge Analytica, a political consulting firm. According to news reports (Frier 2018; 
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Romm 2019), Cambridge Analytica had accessed personal information of these 87 million users without 
their consent, using Facebook’s friends connections from about 270,000 users who participated in a study 
conducted by the firm. Based on the data, Cambridge Analytica was able to build the voting-related 
profiles for those users and create personalized ads for them, which could potentially influence their 
voting decisions. This unprecedented data harvesting and abuse has raised urgent privacy concern and 
caused backlash from the public. As a result, Cambridge Analytica has filed for insolvency proceedings 
and closed its operations, and Facebook is facing possible multi-billion dollars fine for its privacy violation 
(Romm 2019). 

Two aspects in the Facebook/Cambridge Analytica case are worth noting. First, the privacy adversary 
attempted to obtain information from a massive number of people, rather than from a few focused 
subjects. Second, the adversary did not have much background information about the individuals to be 
targeted; instead, the background information was acquired as part of privacy disclosure process. The 
background information here refers to non-sensitive information (e.g., Facebook users’ demographic and 
social-economic attributes), which is different from identity information, as well as sensitive information 
that the adversary ultimately pursues (e.g., political ideology or voting stance). The two aspects above are 
also common in many marketing applications with privacy concerns, where a large number of consumers 
are targeted and their background information is acquired during the marketing process (Duhigg 2012). 
These aspects have not been specifically studied in the data privacy literature. Often, research efforts are 
focused on relatively small number of data subjects (i.e., the subjects having highest identity disclosure 
risks). Also, many data privacy approaches assume that the adversary already knew the background 
information about the target individuals. 

A large body of research in data privacy has focused on the risk of re-identification, which concerns how 
likely an adversary can match a record in a de-identified dataset to a target individual using some 
combination of the individual’s non-sensitive attributes, called quasi-identifier (QI) attributes, such as 
age, gender and zip code (Sweeney 2002). To prevent re-identification, Sweeney (2002) and Samarati 
(2001) propose the 𝑘-anonymity model, which requires each record should be indistinguishable from at 
least 𝑘 − 1 other records with respect to the QI values in the released dataset. However, k-anonymity 
model and many other related privacy models assume that the adversary knew the QI values of the target 
individuals. This may not be true in practice. Indeed, Dwork (2006, 2011) criticize that most of 
anonymization approaches need assumptions on the adversary’s auxiliary information about the target 
individuals. To address this problem, Dwork (2006, 2011) propose the differential privacy model, which 
does not make any assumption about an adversary’s prior knowledge. However, differential privacy is 
typically used for database query applications or aggregate data analysis. It is not designed for releasing or 
sharing an entire dataset of individual records, because there would likely be huge information loss in the 
released dataset in order to satisfy the differential privacy requirements (Machanavajjhala et al. 2008). 

Our work uses anonymization framework to address privacy disclosure problem in the context of data 
sharing. Different from k-anonymity, we do not assume that an adversary knew the background 
information of the target individuals. We consider a privacy attack situation where an adversary has 
access to a de-identified dataset and attempts to acquire personal information about a large number of 
individuals in the dataset. We study the problem by considering two types of privacy disclosures. The first 
type concerns how feasible or likely for an adversary to find the background information about the 
individuals in the dataset, assuming the adversary does not have the background information. We call this 
a background disclosure problem. To the best of our knowledge, the background disclosure problem has 
not been formally investigated in literature. After background disclosure, the adversary proceeds to 
pursue the second type of disclosure, which is to identify individual targets based on their background 
information. This second type of disclosure is commonly referred to as re-identification in literature. 

In this paper, we propose a novel approach to assess and mitigate background disclosure and re-
identification risks in a released dataset. We use a decision tree technique to partition the dataset into 
groups/subsets. The background disclosure risk and re-identification risk for the individuals in a group 
are measured based on the attribute values that define the group and the size of the group, respectively. 
Accordingly, the two risk measures can be described with prior probability and conditional probability, 
respectively. We integrate the two risk measures into a composite measure based on the notion of 
Minimum Description Length (MDL) (Rissanen 1978). We then develop a decision-tree pruning 
algorithm to find an appropriate group size considering the tradeoff between disclosure risk and data 
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utility. Furthermore, we propose a novel tiered generalization method for anonymizing data at the group 
level, which takes advantage of the tiered structure of the decision tree to effectively limit background 
disclosure and also reduce information loss due to generalization. 

This work makes contributions to the data privacy literature in several aspects: 

1. We consider privacy attacks targeting a large number of people, where the adversary does not have 
prior knowledge about these people. We introduce the notion of background disclosure inherent in 
this problem. 

2. We propose a novel privacy measure that integrates background disclosure and re-identification risks 
based on the MDL principle. We develop a decision-tree algorithm that uses this measure in 
partitioning data into groups for anonymization. 

3. We propose a new tiered generalization method that takes advantage of the tiered structure of the 
decision tree to effectively mitigate the background disclosure and also reduce information loss due to 
generalization. 

Related Work 

A main stream of data privacy research is based on a popular privacy model called k-anonymity (Samarati 
2001; Sweeney 2002). Given a dataset to be shared, the k-anonymity approach first divides the data into a 
number of groups, called QI groups, with at least k records in each group. The QI values are then 
anonymized using the same generalized values within a QI group so that a record is indistinguishable 
from at least 𝑘 − 1 other records with respect to the QI values. Assuming that the adversary knew the QI 
values of the target individuals but not the other attribute values, the re-identification risk for any 
individual in a k-anonymized dataset is 1/k at most. A series of refined models, such as l-diversity 
(Machanavajjhala et al. 2007) and t-closeness (Li et al. 2007), are proposed to overcome k-anonymity’s 
limitations in handling disclosures caused by sensitive attributes. These popular models typically assume 
that the adversary knew the target individual’s record is in the released data and thus focus on how to 
reduce the probability of uniquely identifying the right record. On the other hand, another privacy model 
called δ-presence considers the scenario where knowing the presence of target individuals in the released 
data already constitutes a privacy disclosure; it thus focuses on how to protect against this presence 
disclosure (Nergiz et al. 2007; Nergiz and Clifton 2010). This stream of studies all assume that the 
adversary knew the QI values  of the target individuals. They do not address the background disclosure 
problem concerned in this study. 

Another stream of studies represented by Dwork (2006, 2011) criticize that it is hard or even unrealistic to 
make assumption on the adversary’s prior knowledge about the target individuals. Dwork and her 
colleagues propose the differential privacy principal that does not require the assumption. Differential 
privacy is appealing in that it guarantees that addition or deletion of any individual’s record does not 
significantly affect the result of data analysis. However, differential privacy is mainly applicable to 
database query or aggregate data analysis, and does not work well for dataset release. Differential privacy 
treats data utility as a secondary objective, considered only after privacy criteria are rigorously satisfied. 
As a result, it causes huge information loss when applied to releasing a dataset at the individual record 
level (Machanavajjhala et al. 2008). Our work is in the context of dataset sharing, where differential 
privacy is not very effective. But in line with differential privacy, we do not make assumption on the 
adversary’s prior knowledge about the background information of the target individuals. 

We should point out the two differences between the term “quasi-identifier” (QI) in literature and the 
term “background information” used in this paper. First, the QI attributes are predefined by the data 
owner organization while the attributes representing background information are not predefined. Second, 
quasi-identifier is assumed known to the adversary but background information is not; the adversary 
needs to acquire the background information in the privacy disclosure process. Usually, the background 
information can be obtained in publically available data (e.g., voter registration list) or acquired from 
commercial data vendors (FTC 2014), where the identities of the individuals are also included. We call 
this type of data reference data in this paper. Note that the reference data do not include the sensitive 
attributes (e.g., purchase transaction data or financial information) that the adversary attempts to find. 
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Instead, the sensitive information is contained in the de-identified data released by the data owner 
organization. 

Several studies have exploited tree-based partitioning methods to generate QI groups (LeFevre et al. 
2006; LeFevre et al. 2008; Fu et al. 2010; Li and Sakar 2009; Li and Sakar 2014). LeFevre et al. (2006) 
used kd-trees to cluster data into groups to reduce the information loss caused by generalization on QI 
values. LeFevre et al. (2008) adopt decision trees to split data into groups for privacy protection while 
ensuring the prediction accuracy. Fu et al. (2010) focus on the conditions to preserve decision tree models 
while protecting data privacy. Li and Sarkar (2009, 2014) investigate the sensitive attribute disclosure 
problems when classification and regression trees are used for privacy breach, respectively. None of these 
studies, however, has considered the background disclosure problem. Li and Sarkar (2009) observe that 
tree-based approaches can be used to identify a large number of vulnerable individuals. We have 
mentioned earlier that the problem we study involves disclosure of private information on a large number 
of people. Hence, our approach addresses the issue using decision trees too. 

Generalization is one of the most widely used methods for anonymizing data. In traditional approaches 
such as k-anonymity, l-diversity and t-closeness, individual QI attribute values of the records in a QI 
group are generalized into the same value to make them indistinguishable. While this uniform 
generalization method anonymizes the records well, it also causes considerable information loss. Various 
alternative approaches for anonymizing data have been proposed to reduce information loss, including 
Anatomy (Xiao and Tao 2006), k-type anonymization (Gionis et al. 2008), and ring generalization (Wong 
et al. 2010). With respect to the problem we study, it can be shown that uniform generalization also makes 
background disclosure easier. In order to mitigate both background disclosure risk and information loss, 
we propose a tiered generalization approach. 

An Illustrative Example 

Consider an online retail company that has large sets of customer and transaction data. The company 
shares the data with some consulting firms based on some data sharing agreements. To comply with 
GDPR, the identities of the customers are removed but background and transaction data, such as age, 
gender, marital status, and purchase transactions, are included. The consulting firms may use the data to 
develop analytical models for serving the retail company’s business. Some of these firms may have or are 
able to obtain the reference data that include these customers’ identity and background information, but 
not transaction information. These consulting firms can then match the customers in the de-identified 
dataset provided by the retail company with those in the reference data using the background information 
common in both data sources, producing individually identifiable data that may be private and sensitive. 
The consulting firms can then provide these identifiable data to their other clients for mass marketing and 
promotion. Below, we use a hypothetical dataset to illustrate how the decision tree technique can be used 
by a third party like the consulting firms to determine the background information needed to re-identify 
the de-identified data, as well as the chance for re-identifying the individuals. 

Consider a dataset that contains 14 records of customers with three background attributes, Age, Gender 
(female or male), Marital Status (married or not married), and a class attribute (yes or no) indicating the 
customer has bought a certain medical product or not. Figure 1 shows a decision tree built on this dataset. 
The records in the dataset are partitioned into five leaves (in rounded rectangle). In each node, the first 
row shows the node ID, followed by the distribution of class values at this node, expressed as {number of 
Yes’, number of No’s}. The second row indicates the classification decision and the number of errors (i.e., 
misclassified records) with the decision. The classification decision at each node is determined by the 
majority class value occurred in this node, and the classification errors equals to the number of records 
with minority class values. For example, Node 4 contains two records, both having a Yes for the class 
value; so the classification decision is Yes with zero error. At each edge, the splitting criterion, which is 
calculated by some metrics such as information gain or Gini index in most existing tree building models, 
indicates the background attribute values used to assign the records to the child nodes. The background 
attribute values of the records within a leaf will be generalized so that each leaf corresponds to a QI group 
in the k-anonymity model. 
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Figure 1.  An Example of Decision Tree 

 

Using this tree, an adversary who has no predefined targets can easily determine which individuals’ 
background information is easier or harder to obtain. For example, in order to re-identify the two records 
in node 4, the adversary needs to acquire a reference dataset that contains gender and marital status 
attributes. To re-identify the two records in node 8, however, the adversary needs to know one more 
attribute, age, in addition to gender and marital status. Therefore, the records in node 4 have a greater 
background disclosure risk than those in node 8. On the other hand, both nodes 4 and 8 include two 
records. Based on the k-anonymity principle, the re-identification risk for the records in these two nodes 
are the same, both equaling 1/2. Considering both background disclosure and re-identification, it is easy 
to see that the records in node 4 have a higher disclosure risk than those in node 8. 

Background disclosure risk depends not only on the number of attributes in the background information, 
but also on the size or range of the attribute values. For example, nodes 8 and 9 involve the same three 
attributes (Gender, Marital Status, and Age). The gender and marital status for the two nodes are the 
same. The only difference between them is that the records in node 8 are aged 65 years or younger while 
those in node 9 are older than 65 years. Given the age distribution in any typical population, it would be 
easier to get reference data to cover people aged 65 years or younger than that to cover adult people older 
than 65 years. That is, background disclosure for those in node 8 is easier (i.e., risk is higher) than those 
in node 9. On the other hand, re-identification risk for those in node 8 is also higher (1/2) than those in 
node 9 (1/3). Therefore, the records in node 8 have higher combined disclosure risk than those in node 9. 

Disclosure Risk Measures and Utility Measure 

The above example shows that the background information necessary for an adversary to re-identify an 
individual in a group/subset can be represented by the attributes used to split the data to form the group. 
In general, the more attributes required to specify the background information for the group, the more 
difficult to acquire the required background information. In a decision tree, this is illustrated as a longer 
path from the root to the leaf. In addition to the number of attributes, the background information is also 
related to the values of the attribute involved. In general, the larger the range or size of the attribute 
values, the easier to obtain the reference data covering these values. Note that smaller range attribute 
values may result in higher re-identification risk. We will discuss this issue later when analyzing the re-
identification risk. 

Female Male 

Married Not Married Married Not Married 

Age > 65 Age ≤ 65 

#1: {7, 7} 
Yes or No, 7 

#8: {2, 0} 
Yes, 0 

#9: {0, 3} 
No, 0 

#4: {2, 0} 
Yes,0 

#5: {0, 3} 
No, 0 

#2: {2, 3} 
No, 2 

#3: {5, 4} 
Yes, 4 

#7: {3, 1} 
Yes, 1 

#6: {2, 3} 
No, 2 



 Assessing and Mitigating Background and Identity Disclosure Risks 
  

 Fortieth International Conference on Information Systems, Munich 2019 6 

The second aspect above is related to the domain of an attribute, which refers to all the values the 
attribute contain. The domain size for a categorical attribute is the number of distinct values in the dataset; 
for a numeric attribute it is the value range of the attribute in the dataset. For example, the domain size 
for Gender is two in the root node and becomes one in the other node (either Female or Male). The 
domain size for Age in the root node is the entire Age value range in the dataset and it reduces to “> 65” in 
node 9. For an attribute j, let 𝑉𝑗 and 𝑉𝑗(𝑡) be its domain size in the full dataset and in a node t, respectively. 
Assume that data values follow a uniform distribution, which is an often used assumption in the data 
privacy literature (Machanavajjhala et al. 2007; Xiao and Tao 2006). If based on attribute j only, the 
probability that an individual is in node t is 𝑃𝑗(𝑡) = 𝑉𝑗(𝑡)/𝑉𝑗. If node t is obtained by splitting m attributes, 
then the probability an individual is in node t is ∏ 𝑃𝑗(𝑡)𝑚

𝑗=1 . This probability can be used to measure the 
degree of difficulty or easiness for an adversary to obtain the relevant background information for the 
individuals in node t. Note that the probability product above assumes the attributes are mutually 
independent, which may not be the case for some attributes (e.g., age is independent of gender, but not of 
marital status). However, the measure will not be used to actually estimate the probabilities; rather, it is 
to be used to compare the degree of difficulty to obtain the background information in different nodes. So, 
the assumption is reasonable in this sense. 

Another, perhaps more usual, way to describe the background information is to use the information 
measure in the information theory literature (Shannon 1948). In our context, the information content for 
a node t with background information probability 𝑃𝑗(𝑡) is − log2 𝑃𝑗(𝑡). Note that the larger the 𝑃𝑗(𝑡) value, 
the smaller the − log2 𝑃𝑗(𝑡) value. Thus, a smaller value in information content means the information is 
more general while a larger value means the information is more specific. For the m attribute case, the 
information content corresponding to ∏ 𝑃𝑗(𝑡)𝑚

𝑗=1  is −∑ log2 𝑃𝑗(𝑡)𝑚
𝑗=1 . We define background information 

disclosure risk based on this measure. 

Definition 1. For a node t obtained using m attributes, the background information granularity (BIG) 
is defined by 

 𝐵𝐵𝐵(𝑡) = −∑ log2 𝑃𝑗(𝑡)𝑚
𝑗=1   (1) 

Note that 𝐵𝐵𝐵(𝑡) is a positive number because log2 𝑃𝑗(𝑡) is negative. It follows from (1) that the larger the 
m value and/or the larger the − log2 𝑃𝑗(𝑡) value, the larger the 𝐵𝐵𝐵(𝑡) value. In other words, the more 
attributes and/or more detailed attribute information required to identify node t, the larger the 𝐵𝐵𝐵(𝑡) 
value. This means a larger 𝐵𝐵𝐵(𝑡) value indicates a smaller background disclosure risk for the individuals 
in node t. Lemma 1 below states that the background disclosure risk of node 𝑡 is always larger than that of 
its child node. 

Lemma 1. Let 𝑡𝑐 be a child node of node t. Then 

 𝐵𝐵𝐵(𝑡) < 𝐵𝐵𝐵(𝑡𝑐)   ∀𝑡  (2) 

The proof is straightforward because a child node is formed by splitting on the parent node using either 
an additional attribute or a smaller domain size of the same attribute. 

After the background information in a node t is acquired, the adversary proceeds to re-identify the 
individuals in node t. Based on the k-anonymity principle (Sweeney 2002), the values of each background 
attribute for all individuals in node t will be generalized into the same value. Therefore, the probability for 
correctly re-identifying an individual 𝑖 in node t (𝑖 ∈ 𝑡) is 𝑃(𝑖|𝑡) = 1/𝑛𝑡, where 𝑛𝑡 is the number of records 
in node t. Since this probability is conditioned on getting the background information for node t, we 
rename this measure as conditional re-identification risk. The corresponding information measure is 
− log2 𝑃(𝑖|𝑡) = − log2 �

1
𝑛𝑡
� = log2 𝑛𝑡, formally defined below. 

Definition 2. Given a node t with 𝑛𝑡 records, the information for conditional re-identification (ICR) of a 
record in node 𝑡 is 

 𝐼𝐼𝐼(𝑡) = log2 𝑛𝑡   (3) 

Clearly, 𝐼𝐼𝐼(𝑡) increases with 𝑛𝑡. So, the larger the number of records in a node, the more information 
needed for conditional re-identification, and the smaller the conditional re-identification risk. 
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Lemma 2. Let 𝑡𝑐 be a child node of node t. Then 

 𝐼𝐼𝐼(𝑡) > 𝐼𝐼𝐼(𝑡𝑐)  ∀𝑡 (4) 

The proof is straightforward because a child node has a smaller number of records and thus a smaller ICR 
value than its parent node. 

Statistically, the background disclosure risk 𝑃(𝑡) can be regarded as the prior probability for an adversary 
to find the background information for the individuals in node 𝑡, while the re-identification risk 𝑃(𝑖|𝑡) can 
be viewed as the conditional probability for the adversary to correctly identify a record in node 𝑡. As we 
pointed out earlier, existing related work assumes that background information is known and thus the 
prior probability for background disclosure is 100%. We do not make this assumption. We have also 
defined two information-based disclosure risk measures, BIG and ICR, corresponding to the prior 
probability and conditional probability respectively. To consider the two disclosure risks jointly, one 
approach is to construct a posterior probability measure by joining the prior probability and conditional 
probability. However, it is computationally more convenient to combine the two information-based the 
measures based on the well-known Minimum Description Length (MDL) principle (Rissanen 1978). 

Given a set of hypotheses ℋ for describing data 𝐷 , let 𝐿(𝐻) be the length or amount of information 
required to describe a hypothesis 𝐻(𝐻 ∈ ℋ) and 𝐿(𝐷|𝐻) be the length or amount of information required 
to describe the data D given the hypothesis H. The MDL principle states that the best hypothesis is the 
one that minimizes the total description length 𝐿(𝐻) + 𝐿(𝐷|𝐻). In our problem context, H represents the 
background information and 𝐷|𝐻 represents re-identification given the information in H. Based on this 
interpretation, we introduce a measure for assessing the combined background disclosure and re-
identification risks. 

Definition 3. The total information for disclosing individuals (TIDI) in node 𝑡 is the sum of node t’s 
background information granularity (BIG) and its information for conditional re-identification (ICR), 
written as 

 𝑅(𝑡) = −� log2 𝑃(𝑡)
𝑚

𝑗=1

+ [− log2 𝑃(𝑖|𝑡)] = −� log2
𝑉𝑗(𝑡)
𝑉𝑗

𝑚

𝑗=1

+ log2 𝑛𝑡 (5) 

The TIDI measure considers the combined information required for both background and re-
identification disclosures. The smaller the TIDI value, the smaller the required combined information and 
the higher the combined disclosure risk. In Figure 1, for example, 𝑅(2) = − log2

1
2

+ log2 5 = 3.322, and 

𝑅(6) = �− log2
1
2
− log2

1
2
� + log2 5 = 4.322. So, the five records at node 2 have higher combined disclosure 

risk than the five records at node 6. This is intuitively understandable because the background 
information for node 2 is simpler than that for node 6 while the re-identification risks for both nodes are 
the same. 

As the value of 𝑅(𝑡) decreases, the amount of information required for identifying the individuals in node 
t becomes smaller, which means the disclosure risk increases for the individuals in node 𝑡. As discussed 
earlier, when a decision tree grows, the BIG component of the 𝑅(𝑡) measure tends to be lager while the 
ICR component tends to be smaller. Therefore, it is interesting to analyze how 𝑅(𝑡) measure changes as a 
decision tree grows; i.e., when a node is split into a branch. 

Definition 4. A branch 𝐵𝑡  is a subsection of a decision tree that includes an internal node t and all its 
leaves and non-leaf descendant nodes. If t is the root of the tree, then the branch is the entire tree. 

In Figure 1, for example, 𝐵2 includes nodes 2, 4 and 5; and 𝐵3 includes nodes 3, 6, 7, 8 and 9. 

In data privacy research and practice, it is a common practice to measure disclosure risk based on the 
maximum risk instead of average risk (Sweeney 2002; Fung et al. 2010; Xiao and Tao 2006). Thus, in a 
branch, the leaf with the smallest TIDI value (i.e., the maximum disclosure risk) should have the highest 
priority for protection. The TIDI measure for a branch is defined accordingly. 

Definition 5. Let 𝑡𝑙  (𝑙 = 1, … ,𝑔) be the g leaves in branch 𝐵𝑡. The TIDI measure of branch 𝐵𝑡  is defined 
by the leaf having the minimum TIDI value, i.e., 
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 𝑅(𝐵𝑡) = min
𝑙=1,…,𝑔

𝑅(𝑡𝑙) (6) 

Take 𝐵2 in Figure 1 as an example. The two child nodes, #4 and #5, have the same value for the first (BIG) 
component of the TIDI measure, but node 4 has a smaller value for the second (ICR) component of TIDI 
than node 5 because node 4 has a fewer number of records than node 5. Therefore,  𝑅(𝐵2) is defined by 
𝑅(4). 

Lemma 3. The TIDI value of node 𝑡 is always larger than or equal to that of branch 𝐵𝑡. That is, 

 𝑅(𝑡) ≥ 𝑅(𝐵𝑡)  ∀𝑡 (7) 

Proof. Continuing the notation used earlier, let 𝛽𝑙 = ∏ 𝑃𝑗(𝑡𝑙)𝑚
𝑗=1 /∏ 𝑃𝑗(𝑡)𝑚

𝑗=1  where 𝑡𝑙  (𝑙 = 1, … ,𝑔) are the g 
leaves in branch 𝐵𝑡. It is easy to see that ∑ 𝛽𝑙

𝑔
𝑙=1 = 1 and 𝑛𝑡 = ∑ 𝑛𝑡𝑙

g
𝑙=1 , where 𝑛𝑡𝑙   is the number of records 

in 𝑡𝑙. Using proof by contradiction, suppose Equation (7) does not hold; that is, there exist a node t such 
that 𝑅(𝑡) < 𝑅(𝐵𝑡). Then 

𝑅(𝐵𝑡) − 𝑅(𝑡) = min
𝑙=1,…,𝑔

𝑅(𝑡𝑙) − 𝑅(𝑡) 

 = min
𝑙=1,…,𝑔

�−� log2 𝑃𝑗(𝑡𝑙)
𝑚

𝑗=1

+ log2 𝑛𝑡𝑙� − �− log2�𝑃𝑗(𝑡)
𝑚

𝑗=1

+ log2 𝑛𝑡� 

 = min
𝑙=1,…,𝑔

�− log2 �𝛽𝑙�𝑃𝑗(𝑡)
𝑚

𝑗=1

� + log2 𝑛𝑡𝑙 + log2�𝑃𝑗(𝑡)
𝑚

𝑗=1

− log2 𝑛𝑡� 

 = min
𝑙=1,…,𝑔

�− log2 𝛽𝑙 − log2�𝑃𝑗(𝑡)
𝑚

𝑗=1

+ log2�𝑃𝑗(𝑡)
𝑚

𝑗=1

+ log2 𝑛𝑡𝑙 − log2 𝑛𝑡� 

 = min
𝑙=1,…,𝑔

�− log2 𝛽𝑙 + log2
𝑛𝑡𝑙
𝑛𝑡
� = min

𝑙=1,…,𝑔
log2 �

𝑛𝑡𝑙
𝑛𝑡𝛽𝑙

� > 0. 

In other words, ∀𝑙 ∈ {1, … ,𝑔}, 𝑛𝑡𝑙 > 𝑛𝑡𝛽𝑙. Then, 

 𝑛𝑡 = �𝑛𝑡𝑙

𝑔

𝑙=1

> �(𝑛𝑡𝛽𝑙)
𝑔

𝑙=1

= 𝑛𝑡�𝛽𝑙

𝑔

𝑙=1

= 𝑛𝑡  

This simplifies to 𝑛𝑡 > 𝑛𝑡, which is a contradiction. Therefore, Equation (7) holds. □ 

Lemma 3 suggests that growing a decision tree will cause the TIDI value to decrease and the combined 
disclosure risk to increase. On the other hand, pruning a decision tree will cause the combined disclosure 
risk to decrease. Therefore, from a disclosure-control perspective, it is desired to have a smaller tree, 
which results in generalizing attribute values over larger groups. 

Decision trees are typically used for classification analysis, and an overly small tree will cause larger 
classification errors. Given a decision tree, its classification accuracy is measured by the sum of the 
numbers of majority class (i.e., the class whose value occurs most frequently) at each leaf, while the 
classification error is determined by the total number of all minority classes. To discuss the tradeoff 
between classification accuracy and disclosure control, we define classification errors for a node and a 
branch, respectively. 

Definition 6A. Let 𝑛𝑡  and 𝑛𝑡
𝑚𝑚𝑚𝑚𝑚  be the number of the total records and the number of the records with 

the majority class in node 𝑡, respectively. The node error of t is equal to the number of all the misclassified 
records at node t, i.e., 

 𝐸(𝑡) = 𝑛𝑡 − 𝑛𝑡
𝑚𝑚𝑚𝑚𝑚  (8) 

Definition 6B. The branch error of branch 𝐵𝑡  is the sum of the node errors from all leaves of 𝐵𝑡  
(𝑡𝑙 , 𝑙 = 1,2, … ,𝑔); that is, 
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 𝐸(𝐵𝑡) = ∑ 𝐸(𝑡𝑙)
𝑔
𝑙=1   (9) 

For example, in Figure 1, 𝐸(2) = 5 − 3 = 2, and 𝐸(𝐵2) = 𝐸(4) + 𝐸(5) = 0 + 0 = 0. Similarly, 𝐸(3) = 4, 
and 𝐸(𝐵3) = 1 + 0 + 0 = 1. 

It is well-known from the decision tree literature (Breiman et al. 1984; Quinlan 1993; Witten et al. 2017) 
that a split always reduces training errors. In other words, the branch error of 𝐵𝑡  are always smaller than 
or equal to the node error of t, i.e., 𝐸(𝐵𝑡) ≤ 𝐸(𝑡). 

Next, we propose a measure, called error-risk ratio, that considers the tradeoff between disclosure risks 
(including background disclosure and conditional re-identification risks) and data utility (as represented 
by classification errors). 

Definition 7 (Error-Risk Ratio). The error-risk (ER) ratio for an internal node t is defined as 

 𝜔𝑡 = 𝑅(𝑡)−𝑅(𝐵𝑡)
𝐸(𝑡)−𝐸(𝐵𝑡)

  (10) 

Here, 𝜔𝑡  (≥ 0) represents the marginal decrease in disclosure risk per unit training error increment due to 
pruning off branch 𝐵𝑡  into leaf node 𝑡. A larger 𝜔𝑡   value suggests a larger reduction in disclosure risk 
given the same increment in training errors, or a smaller increase in errors for the same reduction in 
disclosure risk. So, a larger 𝜔𝑡   value is preferred in selecting a branch for pruning. We describe next how 
this tradeoff measure is used in the proposed tree pruning algorithm. 

Proposed Tree Pruning Algorithm 

Our goal is to find a best tradeoff among the disclosure risks and classification accuracy by constructing a 
decision tree with an appropriate size. We approach this goal through a tree pruning algorithm based on 
the maximum ER ratio criterion. The steps of the algorithm proceed in an iterative process. At each 
iteration, it calculates the value of 𝜔𝑡  for every branch in the current tree. The branch that has the 
maximum value of 𝜔𝑡 is pruned to a leaf. The process continues until a prespecified minimum leaf-size 
criterion is satisfied. The parameter 𝑘 sets the minimum number of records required in a leaf, which is 
used to control the re-identification risk of a group. It also has an impact on background information 
granularity as well as classification error. The proposed algorithm, called error-risk pruning (ERP) 
algorithm, is described in Figure 2. 

Input: T, an unpruned classification tree; k, the minimum number of records in a leaf. 

Output: A pruned tree 𝑇′. 

1. For every internal node 𝑡, calculate the 𝜔𝑡 based on Equation (10). 

2. Select the node having the largest 𝜔𝑡 value and denote it by 𝑡∗. Let ℓ∗ be the leaf of branch 𝐵𝑡∗ 
having the minimum number of records and 𝑛ℓ∗ be the number of records in ℓ∗. 

3. (i) If 𝑛ℓ∗ < 𝑘, then prune branch 𝐵𝑡∗ into a leaf; 

(ii) Otherwise, let 𝑡∗ be the internal node with the next largest 𝜔𝑡 and go to (i). Stop pruning if 
no node can be assigned to 𝑡∗. 

4. Repeat steps 1-3 for the last pruned tree until all leaves satisfy the minimum size criterion. 

Figure 2.  The Error-Risk Pruning (ERP) Algorithm 

Like usual decision tree algorithms, the ERP algorithm is computationally quite efficient, as stated in 
Lemma 4 below. 

Lemma 4. The worst-case time complexity of the ERP algorithm is of order 𝑂(𝑀2), where 𝑀 is the 
number of internal nodes of the tree. 

Proof. Consider an unpruned tree T consisting of M internal nodes. The initial computations on ER 
ratios for all internal nodes are of order 𝑂(𝑀). Identifying the node with the largest ER ratio to prune off 
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also takes a time of order 𝑂(𝑀). In the worst-case scenario, to prune off all internal nodes in the tree, 
there will be at most 𝑀 − 1 iterations for these operations (each subsequent iterations involving fewer 
number of calculations and comparisons). Therefore, the overall time complexity of the ERP algorithm is 
𝑂(𝑀) + O(𝑀 − 1) + ⋯+ 𝑂(1), which is 𝑂(𝑀2). □ 

Next, we explain the ERP procedure using the example in Figure 1 (by considering the tree as a full tree 
for illustration purpose). Suppose that the range of Age values is from 22 to 80. The calculations for the 
node and branch TIDI values, and the ER ratio at internal node 6 are provided as follows: 

𝑅(6) = �− log2
1
2
− log2

1
2
� + log2 5 = 4.322, 

𝑅(𝐵6) = min ��− log2
1
2
− log2

1
2
− log2

65−22
80−22

� + log2 2 , �− log2
1
2
− log2

1
2
− log2

80−65
80−22

� + log2 3 � = 3.432, 

and 𝜔6 = 4.322−3.432
2−0

= 0.445. 

Similarly, we have the following error-risk ratios for all the other internal nodes:  

𝜔1 = 0.135, 𝜔2 = 0.161, 𝜔3 = 0.246. 

Suppose that 𝑘 = 3. Since branch 𝐵6 has the largest ER ratio and meets the condition in step 3(i), it is 
pruned first. Note that branches 𝐵2 and 𝐵6 have the same classification errors. Our algorithm selects 𝐵6 
for pruning because the reduction in combined background disclosure and re-identification risk by 
pruning off 𝐵6 is larger than that by pruning off 𝐵2. 

After pruning off 𝐵6, the process continues for this pruned tree until all leaves of the tree satisfy the 
minimum size criterion. 

Tiered Generalization 

After pruning is completed, the data are partitioned into several groups, each corresponding to a leaf. 
Then, the background attribute values within each group are generalized. Usually, generalization requires 
that the QI attribute values of all records within a group should be the same (hereafter called uniform 
generalization). This uniform generalization could cause large amount of information loss (Xiao and Tao 
2006; Li and Sarkar 2014). As far as background disclosure is concerned, uniform generalization also 
makes background information easier to acquire because generalized data tends to contain fewer 
background attributes and larger domain size of the attributes than the original data. To address this 
problem, we propose a new tiered generalization method that takes advantage of the tiered structure of a 
decision tree and generalizes the records in a group with different attribute values while still satisfying the 
principle of 𝑘-anonymity. 

 
Record 
No. 

Original data Tiered Generalization Uninform Generalization Class 
Attribute Age Marital Status Age Marital Status Age Marital Status 

1 57 Married [42-61] {Married, 
 Not Married} 

[29-61] * Yes 

2 61 Married [42-61] {Married, 
 Not Married} 

[29-61] * Yes 

3 42 Not Married [29-61] {Married, 
 Not Married} 

[29-61] * No 

4 29 Not Married [29-42] Not Married [29-61] * No 

5 38 Not Married [29-42] Not Married [29-61] * No 

Table 1. Example of Tiered Generalization and Uniform Generalization with k = 3 
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Table 1 shows the original data and the anonymized data using tiered and uniform generalization methods, 
with 𝑘 = 3, on the five records in nodes 2 in Figure 1. We add the Age value for each record that was not 
shown in Figure 1, but omit the Gender attribute since it is the same for all the records. Clearly, the Age 
and Marital Status values of any record in the original data can be matched to those of at least three 
records in the data anonymized by the tiered generalization. Therefore, the records with tiered 
generalization satisfy 3-anonymity. Next, we use this example to illustrate the computational steps of the 
tiered generalization. 

The proposed method contains three main steps for a group formed by the ERP pruning: 

Step 1: Subgrouping. The records in a group t formed by the ERP pruning are partitioned into subsets 
𝑡𝑖(𝑖 = 1, … , 𝑙) based on their groups/leaves before pruning. In Table 1, the five records are divided into two 
subsets based on their member groups before pruning, with records 1 and 2 (in node 4 originally) in one 
subset and records 3, 4 and 5 in the other subset (in node 5 originally). 

Step 2: Tiered nearest neighbor searching. Let 𝑛𝑖 be the number of records in a subset 𝑡𝑖. If 𝑛𝑖 < 𝑘, the 
tiered generalization needs to find 𝑘 − 𝑛𝑖 records from the tiered neighboring subsets of 𝑡𝑖. The tiered 
neighbors of 𝑡𝑖 is determined based on the tier structure of the decision tree. The algorithm first searches 
the records from the nodes that share the same parent node with 𝑡𝑖. If the number of records in the 
neighboring nodes is smaller than 𝑘 − 𝑛𝑖 , then the search goes to the nodes that share the same 
grandparent node of 𝑡𝑖. This process continues until the neighboring nodes have at least 𝑘 − 𝑛𝑖 records. At 
this time, if the neighboring nodes have more than 𝑘 − 𝑛𝑖 records, then the 𝑘 − 𝑛𝑖 records that are closest 
to the centroid of 𝑡𝑖 are selected based on the Euclidean distance measure. These 𝑘 − 𝑛𝑖 records are called 
shared records, while the other records are called non-shared records. The shared records need to be 
found for each 𝑡𝑖 having 𝑛𝑖 < 𝑘. 

In table 1, the first subset (based on node 4) has only two records. In order to satisfy 3-anonymity, the 
subset needs one shared record from the tiered nearest neighboring subset (node 5). Based on the 
Euclidean distance, record 3 is selected as the shared record. 

Step 3: Generalizing with sharing. The background attribute values for the non-shared records will be 
generalized using the value domain of the subset. The value domain for a numeric attribute is the value 
range of the attribute in the subset. For a categorical attribute, the value domain includes all distinct 
values of the attribute in the subset. The background attribute values for the shared records will be 
generalized using the combined value domain of the subset itself and all of the related neighboring 
subsets. Continuing with Table 1, the Age and Marital Status values of the non-shared records 1 and 2 are 
generalized using their value domains in the first subset. The non-shared records 4 and 5 are generalized 
similarly using their value domains in the second subset. The shared record 3 is generalized using the 
combined value domains from both subsets.  

Similar to uniform generalization, the tiered generalization replaces numeric attribute values using the 
range value in the relevant subset(s). For a categorical attribute, the tiered generalization replaces the 
values of the records in a subset by a set-valued form that enumerates all the distinct values of the 
attribute in the relevant subset(s). For example, in Table 1, the values of Marital Status for the records in 
the first subset are generalized into {Married, Not Married}. For another example, suppose the Age values 
are also considered categorical or discrete, then the generalized values for the above five records would be 
in the set-valued form as follows: {42, 57, 61} for records 1 and 2, {29, 38, 42} for records 4 and 5, and 
{29, 38, 42, 57, 61} for record 3. 

It is observed that using the uniform generalization, the five records have to be generalized into the same 
values for Age and Marital Status in order to satisfy 3-anonymity. Clearly, the tiered generalization causes 
much smaller information loss in the data than the uniform generalization. In general, given the same k-
anonymity requirement, the tiered generalization typically results in better data quality than the uniform 
generalization. 

The tiered generalization procedure is computationally very efficient. The most time-consuming operation 
is Step 2 (tiered nearest neighbor searching) while the time for the other two steps are negligible. For a 
leaf node t with 𝑛𝑡 records, finding the nearest records takes 𝑂(𝑘𝑛𝑡) time. This search operation needs to 
be done for all L leaves. So, the total complexity for the proposed method is of 𝑂(𝑘𝑛𝑡𝐿) = 𝑂(𝑘𝑘), where N 
is the total number of records in the entire dataset. 
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Experimental Evaluation 

We have conducted an experimental study on two real-world datasets that are commonly used as 
benchmark datasets in data-mining research and also well-documented as having some privacy 
implications (Dua and Graff 2019). The performances are evaluated on re-identification and background 
disclosure risks, as well as data utility for classification analysis. The datasets are described as below. 

The first dataset, Contra, is taken from a National Indonesia Contraceptive Prevalence Survey (Lerman et 
al. 1991). It consisted of 1,473 married women’s records with 10 attributes, five categorical and five 
numeric, including contraceptive method choice (class attribute, with three categories), wife’s age, wife’s 
education, husband’s education, number of children, occupation, religion, etc. 

The second dataset, Adult, is a census dataset extracted from a census bureau database (Kohavi 1996). 
After removing the instances with too many unknown values, the dataset contains 45,222 records, with 
seven categorical and seven numeric attributes such as salary, gender, age, race, education, occupation, 
work class, capital gain, and so on. This data has been used to build classification models to predict 
whether a person makes over $50,000 a year, where the salary is the class attribute with binary 
categories. 

We compare our proposed method with the Mondrian method proposed by LeFevre et al. (2008), which 
is, to our knowledge, the only existing tree-based data privacy research that considers identity disclosure 
as well as the classification utility. Most of recent studies on privacy problems using decision trees are 
quite different from our research and thus are not suitable for comparison purposes. For example, Li and 
Sarkar (2009) consider attribute disclosure and alter the data by swapping sensitive values, whereas Li 
and Sarkar (2014) addresses a regression problem. Neither of them considers identity disclosure problem. 
There are two critical differences between the proposed method and Mondrian: (1) the proposed method 
considers both background disclosure and re-identification risks and integrates the two risk factors into a 
combined measure for partitioning and anonymizing data, while Mondrian only focuses on re-
identification risk by requiring the anonymized data to satisfy 𝑘-anonymity; and (2) the proposed method 
adopts the tiered generalization method while Mondrian uses the uniform generalization method. To 
separate the performance difference due to the proposed ERP pruning method and that due to the tiered 
generalization, we also included an “ERP only” variation for the experiment, which implements the ERP 
pruning but not the tiered generalization (the uniform generalization is used instead). 

For simplicity, we assume that all non-class attributes are background attributes and subject to 
generalization. The class attribute is considered as the sensitive attribute. Following the common practice 
in the framework of data anonymization, the values of the sensitive (class) attribute are not changed. 

In data anonymization studies, a prespecified parameter 𝑘 for the minimum group size is often used as a 
control measure to facilitate comparisons on the other risk and utility measures. This is a common 
practice in previous experimental studies (Machanavajjhala et al. 2007; Li et al. 2007; LeFevre et al. 2008; 
Li and Sarkar 2014). Different 𝑘 values result in different group sizes, and lead to different performances 
on disclosure risks and utility of the anonymized data. We used three typical k values for all three methods: 
𝑘 = 10, 20, and 30. As discussed earlier, parameter k measures re-identification risk. With the same k 
value, we evaluate the performances on background disclosure risk and data utility based on the following 
performance measures. 

To assess the background disclosure risk related to the required background information, we adopt an 
information granularity metric called Global Certainty Penalty (GCP) (Ghinita et al. 2007). To measure 
the GCP of the entire anonymized dataset, we first introduce the information granularity measure (also 
called the normalized certainty penalty or NCP) (Xu et al. 2006) for a generalized value 𝑔 of an attribute 𝐴, 
as follows: 

 𝑁𝑁𝑁(𝑔) = �0,             if |𝑔| = 1
|𝑔| /|𝐴| , otherwise (11) 

where |𝑔| and |𝐴| are the domain sizes of attribute 𝐴 in 𝑔  and in the entire data, respectively. For the 
generalized value 𝑔, the domain size for numeric attribute is the range size from its lower bound to its 
upper bound, and for categorical attribute it is the number of the distinct values in this generalized value. 
For example, for generalized value “Age = [29-42]” the domain size is 13; and for “Marital Status = *”, the 
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domain size is 2, because Marital Status has only two values (married, not married). The value of NCP is 
ranged from 0 to 1, of which 0 means no generalization, whereas 1 means the value is generalized to the 
domain size of the attribute in the entire dataset. Finally, for the released dataset T with 𝑛 records and 𝑚 
background attributes, let 𝑔𝑖𝑖  be the generalized value of attribute 𝑗 in record i. The GCP measure is 
defined as 

 𝐺𝐺𝐺(𝑇) =
∑ �∑ 𝑁𝑁𝑁�𝑔𝑖𝑖�𝑚

𝑗=1 �𝑛
𝑖=1

𝑚 ∗ 𝑛
 (12) 

The value of GCP is also ranged from 0 to 1. A larger GCP indicates that it is easier to acquire the related 
background information for the individuals in the released dataset, which means a higher background 
disclosure risk. 

With respect to the utility of anonymized data, we use the classification error rate resulting from the tree 
model that is built on the anonymized data. For comparison, the classification performances on the 
original datasets are also reported as a benchmark, which were computed using C4.5 decision tree system 
implemented in the Weka software package (Witten et al. 2017). 

For all the three methods, we run a 10-fold cross-validation experimental scheme on the two datasets, 
which is similar to the experimental methodology used by LeFevre et al. (2008), briefly described next. 
First, a dataset was randomly divided into 10 equally sized blocks for 10 test runs. Each time one block 
was used as the test set while the remaining 9 blocks together were the training set. The training set is 
then anonymized by applying one of the three anonymization methods to generate an anonymized 
training set. The anonymized testing set is formed by using the decision tree built from the original data to 
partition the original testing set into groups and then generalizing the groups. Finally, the classification 
model is trained using the anonymized training set and tested using the anonymized testing set. This 
procedure is repeated for 10 runs, each using a different training/testing combination. The reported result 
is computed by averaging the results of the 10 cross-validation runs on each performance measure. 

 

Data set Method Group Size 
(k) 

Time 
(Second) GCP Classification  

Error Rate 

Contra 

Original    47.79% 
Mondrian 
ERP-only 

Proposed method 
10 

0 
0 
3 

0.4174 
0.4093 
0.4071 

58.48% 
49.02% 
48.27% 

Mondrian 
ERP-only 

Proposed method 
20 

0 
0 
3 

0.5136 
0.5131 
0.5127 

59.89% 
59.36% 
56.55% 

Mondrian 
ERP-only 

Proposed method 
30 

0 
0 
3 

0.5771 
0.5728 
0.5602 

60.28% 
60.29% 
59.06% 

Adult 

Original    14.62% 
Mondrian 
ERP-only 

Proposed method 
10 

49 
54 
75 

0.4711 
0.4251 
0.3648 

24.81% 
21.09% 
16.63% 

Mondrian 
ERP-only 

Proposed method 
20 

33 
48 
66 

0.5010 
0.4262 
0.3696 

25.09% 
24.48% 
17.08% 

Mondrian 
ERP-only 

Proposed method 
30 

28 
39 
62 

0.5195 
0.4695 
0.3737 

27.76% 
24.93% 
17.44% 

Table 2. Results of Primary Experiments 
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The results of the experiments are shown in Table 2. It is observed that, for the same group size 𝑘, the 
GCP values with the ERP-only method are smaller than those with Mondrian in both datasets. This 
indicates that given the same re-identification risk, the proposed ERP pruning method produces 
anonymized data with lower background disclosure risk than Mondrian does. This is due to the use of the 
integrated background and identity disclosure risk measure in the ERP pruning method for reducing the 
background disclosure risks. Moreover, the GCP values with the proposed method including both ERP 
pruning and tiered generalization are further smaller than those with the ERP-only method. This is owing 
to the tiered generalization that preserves more detailed background information, making background 
disclosure more difficult. The results also show that the GCP value increases with the parameter 𝑘, this is 
reasonable because with a larger k value the group size becomes larger and attribute values in a group 
need to be generalized to cover larger domains. 

With respect to the data utility, the classification error rates resulting from the ERP-only method are 
generally lower than those from Mondrian for both datasets. A possible explanation is that ERP is better 
than Mondrian in grouping the data by considering background information granularity, so the 
classification models based on the data produced from ERP are more accurate than those from Mondrian. 
Moreover, the classification error rates from the proposed method with ERP pruning plus tiered 
generalization are further lower than those from the ERP-only method. This is due to the capability of the 
tiered generalization to generalize background information at more detailed levels than the uniform 
generalization, preserving more accurate relationship between background attributes and the class 
attribute. The results on both datasets also indicate that the tiered generalization can work for both 
numeric and categorical attributes. In summary, given the same re-identification risk, the proposed 
methods outperforms Mondrian in terms of both background disclosure risk and data utility. 

As for the runtime, all three methods can be completed within seconds or minutes. The proposed method 
ran slightly slower than ERP-only, which in turn ran slightly slower than Mondrian. This is 
understandable because ERP pruning and tiered generalization each requires additional time to compute. 
Nevertheless, the runtimes for the proposed method are reasonable and practical. The results 
demonstrate that the proposed algorithm can be well-suited for large data applications. 

Discussion and Conclusion 

The recent cases of privacy invasion have presented a new privacy problem in which an adversary 
attempts to attack on massive number of people. This massive privacy breach problem is different from 
conventional data privacy problem, as the adversary does not have prior knowledge about the background 
information of the target individuals. The adversary needs to first find the background information about 
the target individuals, and then identify which specific record matches a target individual. To the best of 
our knowledge, none of the existing privacy models is appropriate for this data privacy problem. The 
proposed method can not only protect against background and identity disclosures, but also effectively 
enhance the utility of the data, compared with current state-of-the-art benchmark method. 

This research has significant practical values and business implications. As data-sharing is being 
increasingly adopted in practice, there is a rising sentiment that consumer privacy is being severely 
eroded. The proposed approach enables organizations to alleviate consumers’ concerns about loss of 
privacy and confidentiality, increasing their willingness to allow their data to be shared for secondary 
uses, which in turn helps organizations to better comply with privacy laws and regulations such as GDPR 
and HIPAA (Health Insurance Portability and Accountability Act). Furthermore, GDRP and HIPAA allow 
anonymized personal data to be shared without individuals’ consent. Therefore, organizations can 
implement the proposed approach to transform the original data into high-quality anonymized data and 
share them for legitimate business analytics and consumer research, without violating the privacy laws 
and regulations. 

When using the proposed approach, an important parameter that should be carefully considered is the 
group size k. As discussed earlier, when generalization is used for each group, the re-identification risk for 
any individual in an anonymized dataset is 1/k at most. So, the larger the k value, the smaller the re-
identification risk. However, a larger k value also causes a larger information loss after individual values 
in a group are generalized into the same value. So, the k value has an impact on both disclosure risk and 
data utility. In our experiment, we have chosen k values to be between 10 and 30 based on the choices 
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from prior studies (Machanavajjhala et al. 2007; Li and Sarkar 2014). In practice where the size of the 
dataset is typically large, k can be set to a relatively large value to get a sufficiently small re-identification 
risk. In this case, the generalized data can still have sufficiently high data quality because the number of 
groups obtained from a huge dataset can still be large. 

There are several possible future research directions. The current work focuses on privacy-preserving 
method for classification analysis with a single target workload. Future studies could extend the method 
to other application domains such as regression analysis or multiple target workload. In addition, 
alternative generalization or anonymization techniques, aiming to further improve the data utility while 
preserving privacy, deserve further study. This work focuses on the data science and analytics aspect of 
the privacy disclosure problem. An action research following this work will be another interesting agenda 
for future research. 
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