550 research outputs found

    Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming

    Get PDF
    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors

    Abnormalities in autonomic function in obese boys at-risk for insulin resistance and obstructive sleep apnea.

    Get PDF
    Study objectivesCurrent evidence in adults suggests that, independent of obesity, obstructive sleep apnea (OSA) can lead to autonomic dysfunction and impaired glucose metabolism, but these relationships are less clear in children. The purpose of this study was to investigate the associations among OSA, glucose metabolism, and daytime autonomic function in obese pediatric subjects.MethodsTwenty-three obese boys participated in: overnight polysomnography; a frequently sampled intravenous glucose tolerance test; and recordings of spontaneous cardiorespiratory data in both the supine (baseline) and standing (sympathetic stimulus) postures.ResultsBaseline systolic blood pressure and reactivity of low-frequency heart rate variability to postural stress correlated with insulin resistance, increased fasting glucose, and reduced beta-cell function, but not OSA severity. Baroreflex sensitivity reactivity was reduced with sleep fragmentation, but only for subjects with low insulin sensitivity and/or low first-phase insulin response to glucose.ConclusionsThese findings suggest that vascular sympathetic activity impairment is more strongly affected by metabolic dysfunction than by OSA severity, while blunted vagal autonomic function associated with sleep fragmentation in OSA is enhanced when metabolic dysfunction is also present

    Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications.

    Get PDF
    Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage, resolution, cost, concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls, the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This, along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients

    Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica

    Get PDF
    The mutualistic basidiomycete Piriformospora indica colonizes roots of mono- and dicotyledonous plants, and thereby improves plant health and yield. Given the capability of P. indica to colonize a broad range of hosts, it must be anticipated that the fungus has evolved efficient strategies to overcome plant immunity and to establish a proper environment for nutrient acquisition and reproduction. Global gene expression studies in barley identified various ethylene synthesis and signaling components that were differentially regulated in P. indica-colonized roots. Based on these findings we examined the impact of ethylene in the symbiotic association. The data presented here suggest that P. indica induces ethylene synthesis in barley and Arabidopsis roots during colonization. Moreover, impaired ethylene signaling resulted in reduced root colonization, Arabidopsis mutants exhibiting constitutive ethylene signaling, -synthesis or ethylene-related defense were hyper-susceptible to P. indica. Our data suggest that ethylene signaling is required for symbiotic root colonization by P. indica

    A simulation study comparing aberration detection algorithms for syndromic surveillance

    Get PDF
    BACKGROUND: The usefulness of syndromic surveillance for early outbreak detection depends in part on effective statistical aberration detection. However, few published studies have compared different detection algorithms on identical data. In the largest simulation study conducted to date, we compared the performance of six aberration detection algorithms on simulated outbreaks superimposed on authentic syndromic surveillance data. METHODS: We compared three control-chart-based statistics, two exponential weighted moving averages, and a generalized linear model. We simulated 310 unique outbreak signals, and added these to actual daily counts of four syndromes monitored by Public Health – Seattle and King County's syndromic surveillance system. We compared the sensitivity of the six algorithms at detecting these simulated outbreaks at a fixed alert rate of 0.01. RESULTS: Stratified by baseline or by outbreak distribution, duration, or size, the generalized linear model was more sensitive than the other algorithms and detected 54% (95% CI = 52%–56%) of the simulated epidemics when run at an alert rate of 0.01. However, all of the algorithms had poor sensitivity, particularly for outbreaks that did not begin with a surge of cases. CONCLUSION: When tested on county-level data aggregated across age groups, these algorithms often did not perform well in detecting signals other than large, rapid increases in case counts relative to baseline levels

    Comparative Transcriptomes Profiling of Photoperiod-sensitive Male Sterile Rice Nongken 58S During the Male Sterility Transition between Short-day and Long-day

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Photoperiod-sensitive genic male sterile (PGMS) rice, Nongken 58S, was discovered in 1973. It has been widely used for the production of hybrid rice, and great achievements have been made in improving rice yields. However, the mechanism of the male sterility transition in PGMS rice remains to be determined.</p> <p>Results</p> <p>To investigate the transcriptome during the male sterility transition in PGMS rice, the transcriptome of Nongken 58S under short-day (SD) and long-day (LD) at the glume primordium differentiation and pistil/stamen primordium forming stages was compared. Seventy-three and 128 differentially expressed genes (DEGs) were identified at the glume primordium differentiation and pistil/stamen primordium forming stages, respectively. Five and 22 genes were markedly up-regulated (≥ 5-fold), and two and five genes were considerably down-regulated (≥ 5-fold) under SD during the male sterility transition. Gene ontology annotation and pathway analysis revealed that four biological processes and the circadian rhythms and the flowering pathways coordinately regulated the male sterility transition. Further quantitative PCR analysis demonstrated that the circadian rhythms of <it>OsPRR1, OsPRR37, OsGI, Hd1, OsLHY </it>and <it>OsDof </it>in leaves were obviously different between Nongken 58S and Nongken 58 under LD conditions. Moreover, both <it>OsPRR37 </it>and <it>Hd1 </it>in the inflorescence displayed differences between Nongken 58S and Nongken 58 under both LD and SD conditions.</p> <p>Conclusion</p> <p>The results presented here indicate that the transcriptome in Nongken 58S was significantly suppressed under LD conditions. Among these DEGs, the circadian rhythm and the flowering pathway were involved in the male sterility transition. Furthermore, these pathways were coordinately involved in the male sterility transition in PGMS rice.</p

    The Prevalence of Immunologic Injury in Renal Allograft Recipients with De Novo Proteinuria

    Get PDF
    Post-transplant proteinuria is a common complication after renal transplantation; it is associated with reduced graft and recipient survival. However, the prevalence of histological causes has been reported with considerable variation. A clinico-pathological re-evaluation of post-transplant proteinuria is necessary, especially after dismissal of the term “chronic allograft nephropathy,” which had been considered to be an important cause of proteinuria. Moreover, urinary protein can promote interstitial inflammation in native kidney, whether this occurs in renal allograft remains unknown. Factors that affect the graft outcome in patients with proteinuria also remain unclear. Here we collected 98 cases of renal allograft recipients who developed proteinuria after transplant, histological features were characterized using Banff scoring system. Cox proportional hazard regression models were used for graft survival predictors. We found that transplant glomerulopathy was the leading (40.8%) cause of post-transplant proteinuria. Immunological causes, including transplant glomerulopathy, acute rejection, and chronic rejection accounted for the majority of all pathological causes of proteinuria. Nevertheless, almost all patients that developed proteinuria had immunological lesions in the graft, especially for interstitial inflammation. Intraglomerular C3 deposition was unexpectedly correlated with the severity of proteinuria. Moreover, the severity of interstitial inflammation was an independent risk factor for graft loss, while high level of hemoglobin was a protective factor for graft survival. This study revealed a predominance of immunological parameters in renal allografts with post-transplant proteinuria. These parameters not only correlate with the severity of proteinuria, but also with the outcome of the graft

    HVEM Signalling Promotes Colitis

    Get PDF
    Background Tumor necrosis factor super family (TNFSF) members regulate important processes involved in cell proliferation, survival and differentiation and are therefore crucial for the balance between homeostasis and inflammatory responses. Several members of the TNFSF are closely associated with inflammatory bowel disease (IBD). Thus, they represent interesting new targets for therapeutic treatment of IBD. Methodology/Principal Findings We have used mice deficient in TNFSF member HVEM in experimental models of IBD to investigate its role in the disease process. Two models of IBD were employed: i) chemical-induced colitis primarily mediated by innate immune cells; and ii) colitis initiated by CD4+CD45RBhigh T cells following their transfer into immuno-deficient RAG1-/- hosts. In both models of disease the absence of HVEM resulted in a significant reduction in colitis and inflammatory cytokine production. Conclusions These data show that HVEM stimulatory signals promote experimental colitis driven by innate or adaptive immune cells

    Molecular Typing and Phenotype Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Blood in Taiwan

    Get PDF
    BACKGROUND: Staphylococcus aureus causes a variety of severe infections such as bacteremia and sepsis. At present, 60-80% of S. aureus isolates from Taiwan are methicillin resistant (MRSA). It has been shown that certain MRSA clones circulate worldwide. The goals of this study were to identify MRSA clones in Taiwan and to correlate the molecular types of isolates with their phenotypes. METHODS: A total of 157 MRSA isolates from bacteremic patients were collected from nine medical centers. They were typed based on polymorphisms in agr, SCCmec, MLST, spa, and dru. Phenotypes characterized included Panton-Valentine leucocidin (pvl), inducible macrolide-lincosamide-streptogramin B resistance (MLSBi), vancomycin (VA) and daptomycin (DAP) minimal inhibitory concentrations (MIC), and superantigenic toxin gene profiles. Difference between two consecutive samples was determined by Mann-Whitney-U test, and difference between two categorical variables was determined by Fisher's exact test. RESULTS: Four major MRSA clone complexes CC1, CC5, CC8, and CC59 were found, including 4 CC1, 9 CC5, 111 CC8, and 28 CC59 isolates. These clones had the following molecular types: CC1: SCCmecIV and ST573; CC5: SCCmecII and ST5; CC8: SCCmecIII, ST239, and ST241, and CC59: SCCmecIV, SCCmecV(T), ST59, and ST338. The toxin gene profiles of these clones were CC1: sec-seg-(sei)-sell-selm-(seln)-selo; CC5: sec-seg-sei-sell-selm-(seln)-selp-tst1; CC8: sea-selk-selq, and CC59: seb-selk-selq. Most isolates with SCCmecV(T), ST59, spat437, and dru11 types were pvl(+) (13 isolates), while multidrug resistance (≥4 antimicrobials) were associated with SCCmecIII, ST239, spa t037, agrI, and dru14 (119 isolates) (p<0.001). One hundred and twenty four isolates with the following molecular types had higher VA MIC: SCCmecII and SCCmecIII; ST5, ST239, and ST241; spa t002, t037, and t421; dru4, dru10, dru12, dru13, and dru14 (p<0.05). No particular molecular types were found to be associated with MLSBi phenotype. CONCLUSIONS: Four major MRSA clone complexes were found in Taiwan. Further studies are needed to delineate the evolution of MRSA isolates
    corecore