463,428 research outputs found
Heat-operated cryogenic electrical generator
Generator operation is based upon unusual hydrodynamic properties exhibited by liquid helium below superfluid critical point. Below that temperature, liquid behaves as though it is mixture of two interpenetrating fluids. When transition takes place between superfluid and normal states, conservation of momentum is always balanced by normal fluid
Resonant chambers for suspending materials in air
Acoustical pressure of standing wave is used to suspend materials inside resonant chambers. Material is driven to standing-wave antinodes where pressure is lowest. Pressure at nodes is greatest, which prevents suspended material from collecting there. Material can be moved inside chambers by changing wave patterns
Acoustic containerless experiment system: A non-contact surface tension measurement
The Acoustic Containerless Experiment System (ACES) was flown on STS 41-B in February 1984 and was scheduled to be reflown in 1986. The primary experiment that was to be conducted with the ACES module was the containerless melting and processing of a fluoride glass sample. A second experiment that was to be conducted was the verification of a non-contact surface tension measurement technique using the molten glass sample. The ACES module consisted of a three-axis acoustic positioning module that was inside an electric furnace capable of heating the system above the melting temperature of the sample. The acoustic module is able to hold the sample with acoustic forces in the center of the chamber and, in addition, has the capability of applying a modulating force on the sample along one axis of the chamber so that the molten sample or liquid drop could be driven into one of its normal oscillation modes. The acoustic module could also be adjusted so that it could place a torque on the molten drop and cause the drop to rotate. In the ACES, a modulating frequency was applied to the drop and swept through a range of frequencies that would include the n = 2 mode. A maximum amplitude of the drop oscillation would indicate when resonance was reached and from that data the surface tension could be calculated. For large viscosity samples, a second technique for measuring surface tension was developed. The results of the ACES experiment and some of the problems encountered during the actual flight of the experiment will be discussed
Disk Accretion onto Magnetized Neutron Stars: The Inner Disk Radius and Fastness Parameter
It is well known that the accretion disk around a magnetized compact star can
penetrate inside the magnetospheric boundary, so the magnetospheric radius
\ro does not represent the true inner edge \rin of the disk; but
controversies exist in the literature concerning the relation between \ro and
\rin. In the model of Ghosh & Lamb, the width of the boundary layer is given
by \delta=\ro-\rin\ll\ro, or \rin\simeq\ro, while Li & Wickramasinghe
recently argued that \rin could be significantly smaller than \ro in the
case of a slow rotator. Here we show that if the star is able to absorb the
angular momentum of disk plasma at \ro, appropriate for binary X-ray pulsars,
the inner disk radius can be constrained by 0.8\lsim \rin/\ro\lsim 1, and the
star reaches spin equilibrium with a relatively large value of the fastness
parameter (). For accreting neutron stars in low-mass X-ray
binaries (LMXBs), \ro is generally close to the stellar radius \rs so that
the toroidal field cannot transfer the spin-up torque efficiently to the star.
In this case the critical fastness parameter becomes smaller, but \rin is
still near \ro.Comment: 7 pages, 2 figures, to appear in Ap
Active regulator of SIRT1 is required for cancer cell survival but not for SIRT1 activity
The NAD+-dependent deacetylase SIRT1 is involved in diverse cellular processes, and has also been linked with multiple disease states. Among these, SIRT1 expression negatively correlates with cancer survival in both laboratory and clinical studies. Active regulator of SIRT1 (AROS) was the first reported post-transcriptional regulator of SIRT1 activity, enhancing SIRT1-mediated deacetylation and downregulation of the SIRT1 target p53. However, little is known regarding the role of AROS in regulation of SIRT1 during disease. Here, we report the cellular and molecular effects of RNAi-mediated AROS suppression, comparing this with the role of SIRT1 in a panel of human cell lines of both cancerous and non-cancerous origins. Unexpectedly, AROS is found to vary in its modulation of p53 acetylation according to cell context. AROS suppresses p53 acetylation only following the application of cell damaging stress, whereas SIRT1 suppresses p53 under all conditions analysed. This supplements the original characterization of AROS but indicates that SIRT1 activity can persist following suppression of AROS. We also demonstrate that knockdown of AROS induces apoptosis in three cancer cell lines, independent of p53 activation. Importantly, AROS is not required for the viability of three non-cancer cell lines indicating a putative role for AROS in specifically promoting cancer cell survival
- …
