18 research outputs found

    Long-term outcomes of radiofrequency ablation vs. partial nephrectomy for cT1 renal cancer: A meta-analysis and systematic review

    Get PDF
    BackgroundPartial nephrectomy (PN) is one of the most preferred nephron-sparing treatments for clinical T1 (cT1) renal cancer, while radiofrequency ablation (RFA) is usually used for patients who are poor surgical candidates. The long-term oncologic outcome of RFA vs. PN for cT1 renal cancer remains undetermined. This meta-analysis aims to compare the treatment efficacy and safety of RFA and PN for patients with cT1 renal cancer with long-term follow-up of at least 5 years.MethodThis meta-analysis was performed following the PRISMA reporting guidelines. Literature studies that had data on the comparison of the efficacy or safety of RFA vs. PN in treating cT1 renal cancer were searched in databases including PubMed, Embase, Web of Science, and the Cochrane Library from 1 January2000 to 1 May 2022. Only long-term studies with a median or mean follow-up of at least 5 years were included. The following measures of effect were pooled: odds ratio (OR) for recurrence and major complications; hazard ratio (HR) for progression-free survival (PFS), cancer-specific survival (CSS), and overall survival (OS). Additional analyses, including sensitivity analysis, subgroup analysis, and publication bias analysis, were also performed.ResultsA total of seven studies with 1,635 patients were finally included. The treatment efficacy of RFA was not different with PN in terms of cancer recurrence (OR = 1.22, 95% CI, 0.45–3.28), PFS (HR = 1.26, 95% CI, 0.75–2.11), and CSS (HR = 1.27, 95% CI, 0.41–3.95) as well as major complications (OR = 1.31, 95% CI, 0.55–3.14) (P > 0.05 for all). RFA was a potential significant risk factor for OS (HR = 1.76, 95% CI, 1.32–2.34, P < 0.001). No significant heterogeneity and publication bias were observed.ConclusionThis is the first meta-analysis that focuses on the long-term oncological outcomes of cT1 renal cancer, and the results suggest that RFA has comparable therapeutic efficacy with PN. RFA is a nephron-sparing technique with favorable oncologic efficacy and safety and a good treatment alternative for cT1 renal cancer

    Residues 318 and 323 in capsid protein are involved in immune circumvention of the atypical epizootic infection of infectious bursal disease virus

    Get PDF
    Recently, atypical infectious bursal disease (IBD) caused by a novel variant infectious bursal disease virus (varIBDV) suddenly appeared in immunized chicken flocks in East Asia and led to serious economic losses. The epizootic varIBDV can partly circumvent the immune protection of the existing vaccines against the persistently circulating very virulent IBDV (vvIBDV), but its mechanism is still unknown. This study proved that the neutralizing titer of vvIBDV antiserum to the epizootic varIBDV reduced by 7.0 log2, and the neutralizing titer of the epizootic varIBDV antiserum to vvIBDV reduced by 3.2 log2. In addition, one monoclonal antibody (MAb) 2-5C-6F had good neutralizing activity against vvIBDV but could not well recognize the epizootic varIBDV. The epitope of the MAb 2-5C-6F was identified, and two mutations of G318D and D323Q of capsid protein VP2 occurred in the epizootic varIBDV compared to vvIBDV. Subsequently, the indirect immunofluorescence assay based on serial mutants of VP2 protein verified that residue mutations 318 and 323 influenced the recognition of the epizootic varIBDV and vvIBDV by the MAb 2-5C-6F, which was further confirmed by the serial rescued mutated virus. The following cross-neutralizing assay directed by MAb showed residue mutations 318 and 323 also affected the neutralization of the virus. Further data also showed that the mutations of residues 318 and 323 of VP2 significantly affected the neutralization of the IBDV by antiserum, which might be deeply involved in the immune circumvention of the epizootic varIBDV in the vaccinated flock. This study is significant for the comprehensive prevention and control of the emerging varIBDV

    The World Federation of Democratic Youth and Bruno Bernini's encounter with Mao's China

    Get PDF
    This paper examines the role played by adult-led youth groups in providing avenues for early encounters between Italian and Chinese Communists in the '50s. In particular, it focuses on the links built up within international organisations linked to the Soviet-sponsored peace movement at a time when direct exchange between the Italian and Chinese Communist parties had yet to start. Relying on a large variety of primary and secondary sources, some of which have never been used before, I provide evidence of how participation in Soviet-led international organisations made early political contacts and interactions possible. The focus is on Bruno Bernini, whose personal experience in China is examined within the context of the World Federation of Democratic Youth's policies and initiatives in the early and mid-'50s

    Complementary Base Station Clustering for Cost-Effective and Energy-Efficient Cloud-RAN

    No full text
    International audienceThe fast growing mobile network data traffic poses great challenges for operators to increase their data processing capacity in base stations in an efficient manner. With the emergence of Cloud Radio Access Network (Cloud-RAN), the data processing units can now be centralized in a data center and shared among several base stations. By clustering base stations with complementary traffic patterns to the same data center, the deployment cost and energy consumption can be reduced. In this paper, we propose a two-phase framework to find optimal base station clustering schemes in a city-wide Cloud-RAN. First, we design a traffic profile for each base station, and propose an entropy-based metric to characterize the complementarity among base stations. Second, we build a graph model to represent the complementarity as link weight, and propose a distance-constrained clustering algorithm to find optimal base station clustering schemes. We evaluate the performance of our framework using two months of real-world mobile network traffic data in Milan, Italy. Results show that our framework effectively reduces 12.88% of deployment cost and 9.45% of energy consumption compared with traditional architectures, and outperforms the baseline method

    Syn_SegNet:A Joint Deep Neural Network for Ultrahigh-Field 7T MRI Synthesis and Hippocampal Subfield Segmentation in Routine 3T MRI

    No full text
    Precise delineation of hippocampus subfields is crucial for the identification and management of various neurological and psychiatric disorders. However, segmenting these subfields automatically in routine 3T MRI is challenging due to their complex morphology and small size, as well as the limited signal contrast and resolution of the 3T images. This research proposes Syn_SegNet, an end-to-end, multitask joint deep neural network that leverages ultrahigh-field 7T MRI synthesis to improve hippocampal subfield segmentation in 3T MRI. Our approach involves two key components. First, we employ a modified Pix2PixGAN as the synthesis model, incorporating self-attention modules, image and feature matching loss, and ROI loss to generate high-quality 7T-like MRI around the hippocampal region. Second, we utilize a variant of 3D-U-Net with multiscale deep supervision as the segmentation subnetwork, incorporating an anatomic weighted cross-entropy loss that capitalizes on prior anatomical knowledge. We evaluate our method on hippocampal subfield segmentation in paired 3T MRI and 7T MRI with seven different anatomical structures. The experimental findings demonstrate that Syn_SegNet's segmentation performance benefits from integrating synthetic 7T data in an online manner and is superior to competing methods. Furthermore, we assess the generalizability of the proposed approach using a publicly accessible 3T MRI dataset. The developed method would be an efficient tool for segmenting hippocampal subfields in routine clinical 3T MRI.</p

    Syn_SegNet:A Joint Deep Neural Network for Ultrahigh-Field 7T MRI Synthesis and Hippocampal Subfield Segmentation in Routine 3T MRI

    No full text
    Precise delineation of hippocampus subfields is crucial for the identification and management of various neurological and psychiatric disorders. However, segmenting these subfields automatically in routine 3T MRI is challenging due to their complex morphology and small size, as well as the limited signal contrast and resolution of the 3T images. This research proposes Syn_SegNet, an end-to-end, multitask joint deep neural network that leverages ultrahigh-field 7T MRI synthesis to improve hippocampal subfield segmentation in 3T MRI. Our approach involves two key components. First, we employ a modified Pix2PixGAN as the synthesis model, incorporating self-attention modules, image and feature matching loss, and ROI loss to generate high-quality 7T-like MRI around the hippocampal region. Second, we utilize a variant of 3D-U-Net with multiscale deep supervision as the segmentation subnetwork, incorporating an anatomic weighted cross-entropy loss that capitalizes on prior anatomical knowledge. We evaluate our method on hippocampal subfield segmentation in paired 3T MRI and 7T MRI with seven different anatomical structures. The experimental findings demonstrate that Syn_SegNet's segmentation performance benefits from integrating synthetic 7T data in an online manner and is superior to competing methods. Furthermore, we assess the generalizability of the proposed approach using a publicly accessible 3T MRI dataset. The developed method would be an efficient tool for segmenting hippocampal subfields in routine clinical 3T MRI.</p

    Syn_SegNet:A Joint Deep Neural Network for Ultrahigh-Field 7T MRI Synthesis and Hippocampal Subfield Segmentation in Routine 3T MRI

    No full text
    Precise delineation of hippocampus subfields is crucial for the identification and management of various neurological and psychiatric disorders. However, segmenting these subfields automatically in routine 3T MRI is challenging due to their complex morphology and small size, as well as the limited signal contrast and resolution of the 3T images. This research proposes Syn_SegNet, an end-to-end, multitask joint deep neural network that leverages ultrahigh-field 7T MRI synthesis to improve hippocampal subfield segmentation in 3T MRI. Our approach involves two key components. First, we employ a modified Pix2PixGAN as the synthesis model, incorporating self-attention modules, image and feature matching loss, and ROI loss to generate high-quality 7T-like MRI around the hippocampal region. Second, we utilize a variant of 3D-U-Net with multiscale deep supervision as the segmentation subnetwork, incorporating an anatomic weighted cross-entropy loss that capitalizes on prior anatomical knowledge. We evaluate our method on hippocampal subfield segmentation in paired 3T MRI and 7T MRI with seven different anatomical structures. The experimental findings demonstrate that Syn_SegNet's segmentation performance benefits from integrating synthetic 7T data in an online manner and is superior to competing methods. Furthermore, we assess the generalizability of the proposed approach using a publicly accessible 3T MRI dataset. The developed method would be an efficient tool for segmenting hippocampal subfields in routine clinical 3T MRI.</p

    Syn_SegNet:A Joint Deep Neural Network for Ultrahigh-Field 7T MRI Synthesis and Hippocampal Subfield Segmentation in Routine 3T MRI

    No full text
    Precise delineation of hippocampus subfields is crucial for the identification and management of various neurological and psychiatric disorders. However, segmenting these subfields automatically in routine 3T MRI is challenging due to their complex morphology and small size, as well as the limited signal contrast and resolution of the 3T images. This research proposes Syn_SegNet, an end-to-end, multitask joint deep neural network that leverages ultrahigh-field 7T MRI synthesis to improve hippocampal subfield segmentation in 3T MRI. Our approach involves two key components. First, we employ a modified Pix2PixGAN as the synthesis model, incorporating self-attention modules, image and feature matching loss, and ROI loss to generate high-quality 7T-like MRI around the hippocampal region. Second, we utilize a variant of 3D-U-Net with multiscale deep supervision as the segmentation subnetwork, incorporating an anatomic weighted cross-entropy loss that capitalizes on prior anatomical knowledge. We evaluate our method on hippocampal subfield segmentation in paired 3T MRI and 7T MRI with seven different anatomical structures. The experimental findings demonstrate that Syn_SegNet's segmentation performance benefits from integrating synthetic 7T data in an online manner and is superior to competing methods. Furthermore, we assess the generalizability of the proposed approach using a publicly accessible 3T MRI dataset. The developed method would be an efficient tool for segmenting hippocampal subfields in routine clinical 3T MRI.</p
    corecore