39 research outputs found

    Quantum correlation generation capability of experimental processes

    Full text link
    Einstein-Podolsky-Rosen (EPR) steering and Bell nonlocality illustrate two different kinds of correlations predicted by quantum mechanics. They not only motivate the exploration of the foundation of quantum mechanics, but also serve as important resources for quantum-information processing in the presence of untrusted measurement apparatuses. Herein, we introduce a method for characterizing the creation of EPR steering and Bell nonlocality for dynamical processes in experiments. We show that the capability of an experimental process to create quantum correlations can be quantified and identified simply by preparing separable states as test inputs of the process and then performing local measurements on single qubits of the corresponding outputs. This finding enables the construction of objective benchmarks for the two-qubit controlled operations used to perform universal quantum computation. We demonstrate this utility by examining the experimental capability of creating quantum correlations with the controlled-phase operations on the IBM Quantum Experience and Amazon Braket Rigetti superconducting quantum computers. The results show that our method provides a useful diagnostic tool for evaluating the primitive operations of nonclassical correlation creation in noisy intermediate scale quantum devices.Comment: 5 figures, 3 appendice

    The 5p15.33 Locus Is Associated with Risk of Lung Adenocarcinoma in Never-Smoking Females in Asia

    Get PDF
    Genome-wide association studies of lung cancer reported in populations of European background have identified three regions on chromosomes 5p15.33, 6p21.33, and 15q25 that have achieved genome-wide significance with p-values of 10−7 or lower. These studies have been performed primarily in cigarette smokers, raising the possibility that the observed associations could be related to tobacco use, lung carcinogenesis, or both. Since most women in Asia do not smoke, we conducted a genome-wide association study of lung adenocarcinoma in never-smoking females (584 cases, 585 controls) among Han Chinese in Taiwan and found that the most significant association was for rs2736100 on chromosome 5p15.33 (p = 1.30×10−11). This finding was independently replicated in seven studies from East Asia totaling 1,164 lung adenocarcinomas and 1,736 controls (p = 5.38×10−11). A pooled analysis achieved genome-wide significance for rs2736100. This SNP marker localizes to the CLPTM1L-TERT locus on chromosome 5p15.33 (p = 2.60×10−20, allelic risk = 1.54, 95% Confidence Interval (CI) 1.41–1.68). Risks for heterozygote and homozygote carriers of the minor allele were 1.62 (95% CI; 1.40–1.87), and 2.35 (95% CI: 1.95–2.83), respectively. In summary, our results show that genetic variation in the CLPTM1L-TERT locus of chromosome 5p15.33 is directly associated with the risk of lung cancer, most notably adenocarcinoma

    Crassolide Induces G2/M Cell Cycle Arrest, Apoptosis, and Autophagy in Human Lung Cancer Cells via ROS-Mediated ER Stress Pathways

    No full text
    Crassolide, a cembranoid diterpene extracted from the soft coral Lobophytum crissum, has been proven to possess antioxidant and immunomodulatory properties. In the present study, we assessed the anticancer effects of crassolide on human H460 non-small-cell lung cancer (NSCLC) cells. We found that crassolide exerted cytotoxic effects on H460 cancer cells in vitro, inducing G2/M phase arrest and apoptosis. In addition, in H460 cells exposed to crassolide, the expression of the autophagy-related proteins LC3-II and beclin was increased, while the expression of p62 was decreased. Moreover, inhibiting autophagy with chloroquine (CQ) suppressed the crassolide-induced G2/M arrest and apoptosis of H460 cells. Moreover, we also found that crassolide induced endoplasmic reticulum (ER) stress in lung cancer cells by increasing the expression of ER stress marker proteins and that the crassolide-induced G2/M arrest, apoptosis, and autophagy were markedly attenuated by the ER stress inhibitor 4-phenylbutyric acid (4-PBA). Furthermore, we found that crassolide promoted reactive oxygen species (ROS) production by H460 cells and that the ROS inhibitor N-acetylcysteine (NAC) decreased the crassolide-induced ER stress, G2/M arrest, apoptosis, and autophagy. In conclusion, our findings show that crassolide inhibits NSCLC cell malignant biological behaviors for the first time, suggesting that this effect may be mechanistically achieved by inducing G2/M arrest, apoptosis, and autophagy through ROS accumulation, which activates the ER stress pathway. As a result of our findings, we now have a better understanding of the molecular mechanism underlying the anticancer effect of crassolide, and we believe crassolide might be a candidate for targeted cancer therapy

    Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27

    No full text
    Cancer stem/progenitor cells (CSCs) are a subpopulation of cancer cells involved in tumor initiation, resistance to therapy and metastasis. Targeting CSCs has been considered as the key for successful cancer therapy. Ovatodiolide (Ova) is a macrocyclic diterpenoid compound isolated from Anisomeles indica (L.) Kuntze with anti-cancer activity. Here we used two human breast cancer cell lines (AS-B145 and BT-474) to examine the effect of Ova on breast CSCs. We first discovered that Ova displayed an anti-proliferation activity in these two breast cancer cells. Ova also inhibited the self-renewal capability of breast CSCs (BCSCs) which was determined by mammosphere assay. Ova dose-dependently downregulated the expression of stemness genes, octamer-binding transcription factor 4 (Oct4) and Nanog, as well as heat shock protein 27 (Hsp27), but upregulated SMAD ubiquitin regulatory factor 2 (SMURF2) in mammosphere cells derived from AS-B145 or BT-474. Overexpression of Hsp27 or knockdown of SMURF2 in AS-B145 cells diminished the therapeutic effect of ovatodiolide in the suppression of mammosphere formation. In summary, our data reveal that Ova displays an anti-CSC activity through SMURF2-mediated downregulation of Hsp27. Ova could be further developed as an anti-CSC agent in the treatment of breast cancer

    Digoxin and Amiodarone on the Risk of Ischemic Stroke in Atrial Fibrillation: An Observational Study

    No full text
    Purpose: The present study compared the risk of ischemic stroke in atrial fibrillation (AF) patients receiving digoxin and amiodarone.Methods: A retrospective cohort study was conducted using the longitudinal population-based database of Taiwan’s National Health Insurance program. Patients with AF who received amiodarone or digoxin and were considered to have exposed to study drugs consecutively over 180 days during 2000–2010 were enrolled and divided into three groups: those who received amiodarone, digoxin, and amiodarone plus digoxin. All patients were followed from the index date to the occurrence of ischemic stroke, death, withdrawal from the insurance program, or December 31, 2011. Cox proportional hazard regression models were applied to determine the risk of ischemic stroke and associated risk factors.Results: The amiodarone, digoxin, and amiodarone plus digoxin cohorts comprised 797, 1419, and 376 patients, respectively. Overall, the patients who received digoxin (HR = 1.80; 95% CI = 1.41–2.31) or amiodarone plus digoxin (HR = 2.00; 95% CI = 1.49–2.68) had a higher risk of ischemic stroke, compared with those who received amiodarone. This risk was particularly at CHA2DS2VASc score of 2–5, but disappeared in those who received clopidogrel in the digoxin cohort. The risk of ischemic stroke in the amiodarone plus digoxin cohort did not differ significantly from that in the digoxin cohort (HR = 1.14; 95% CI = 0.90–1.44).Conclusion: Atrial fibrillation patients receiving digoxin are associated with a higher risk of ischemic stroke than are those receiving amiodarone. It is prudent to assess the stroke risk prior to applying treatment strategy for patients with AF.Strengths and Limitations of This Study          - This study is a population-based design with a completeness and accuracy of data, national coverage in both study and control cohorts. All insurance claims were double-checked by medical specialists for peer review.         - Information about serum levels of the drugs, coagulation status, and types of AF were unavailable in this administrative database

    Accelerated Formation of 2D Ruddlesden—Popper Perovskite Thin Films by Lewis Bases for High Efficiency Solar Cell Applications

    No full text
    Various types of 2D organic–inorganic perovskite solar cells have been developed and investigated due to better electron transport behavior and environmental stability. Controlling the formation of phases in the 2D perovskite films has been considered to play an important role in influencing the stability of perovskite materials and their performance in optoelectronic applications. In this work, Lewis base urea was used as an effective additive for the formation of 2D Ruddlesden—Popper (RP) perovskite (BA)2(MA)n−1PbnI3n+1 thin film with mixed phases (n = 2~4). The detailed structural morphology of the 2D perovskite thin film was investigated by in situ X-ray diffraction (XRD), grazing-incidence small-angle X-ray scattering (GISAXS) and photoluminescence mapping. The results indicated that the urea additive could facilitate the formation of 2D RP perovskite thin film with larger grain size and high crystallinity. The 2D RP perovskite thin films for solar cells exhibited a power conversion efficiency (PCE) of 7.9% under AM 1.5G illumination at 100 mW/cm2
    corecore