169 research outputs found

    Objective Bayesian analysis for the generalized exponential distribution

    Full text link
    In this paper, we consider objective Bayesian inference of the generalized exponential distribution using the independence Jeffreys prior and validate the propriety of the posterior distribution under a family of structured priors. We propose an efficient sampling algorithm via the generalized ratio-of-uniforms method to draw samples for making posterior inference. We carry out simulation studies to assess the finite-sample performance of the proposed Bayesian approach. Finally, a real-data application is provided for illustrative purposes.Comment: 13 pages, 5 figures, 2 table

    Design and manipulation of high-performance photovoltaic systems based on two-dimensional novel KAgSe/KAgX(X=S,Te) van der Waals heterojunctions

    Full text link
    The realization of high-performance two-dimensional (2D) solar photovoltaic systems are both fundamentally intriguing and practically appealing to meet the fast-growing energy requirements. Since the limited application of single 2D crystals in photovoltaic, here we propose a family of 2D KAgSe/KAgX(X=S,Te) van der Waals heterostructures (vdWHs), which are constructed by combining two different KAgX layers through interlayer vdW interaction. After a systematic study and further regulatory research of these vdWHs based on the first-principles, numerous fascinating characteristics and physical mechanisms are obtained. Firstly, favorable potential applications of these vdWHs in photovoltaics are confirmed in virtue of their desirable optoelectronic properties, such as the robust stabilitis, moderate direct band gaps, type-II band alignments together with superior carrier mobilities, visible optical absorptions, power conversion efficiencys (PCEs) and photocurrents in their based photovoltaic devices. More importantly, when under varying vertical electric field Ez, a phase transition of band alignment from type-II to type-I of these vdWHs can be induced by the opposite band shifts between layers, which may enrich their applications in light-emitting diodes and lasers. Meanwhile, the PCE can be expanded up to 23%, and an obvious red-shift peak of the photocurrent in the visible light range are also obtained at different Ez. These fascinating tunable properties of KAgSe/KAgX vdWHs under varying Ez not only promote the improvement of their photoelectric performances, but the underlying mechanisms can also be applied to next experimental design and practical application of other 2D photovoltaic systems. Especially for the red-shift peak of the photocurrent, which is rarely found but highly desirable in practical visible photoelectric conversion.Comment: 11 pages, 7figure

    PPG-based Heart Rate Estimation with Efficient Sensor Sampling and Learning Models

    Full text link
    Recent studies showed that Photoplethysmography (PPG) sensors embedded in wearable devices can estimate heart rate (HR) with high accuracy. However, despite of prior research efforts, applying PPG sensor based HR estimation to embedded devices still faces challenges due to the energy-intensive high-frequency PPG sampling and the resource-intensive machine-learning models. In this work, we aim to explore HR estimation techniques that are more suitable for lower-power and resource-constrained embedded devices. More specifically, we seek to design techniques that could provide high-accuracy HR estimation with low-frequency PPG sampling, small model size, and fast inference time. First, we show that by combining signal processing and ML, it is possible to reduce the PPG sampling frequency from 125 Hz to only 25 Hz while providing higher HR estimation accuracy. This combination also helps to reduce the ML model feature size, leading to smaller models. Additionally, we present a comprehensive analysis on different ML models and feature sizes to compare their accuracy, model size, and inference time. The models explored include Decision Tree (DT), Random Forest (RF), K-nearest neighbor (KNN), Support vector machines (SVM), and Multi-layer perceptron (MLP). Experiments were conducted using both a widely-utilized dataset and our self-collected dataset. The experimental results show that our method by combining signal processing and ML had only 5% error for HR estimation using low-frequency PPG data. Moreover, our analysis showed that DT models with 10 to 20 input features usually have good accuracy, while are several magnitude smaller in model sizes and faster in inference time

    Impact of dietary manganese on intestinal barrier and inflammatory response in broilers challenged with Salmonella Typhimurium

    Get PDF
    Growing concern for public health and food safety has prompted a special interest in developing nutritional strategies for removing waterborne and foodborne pathogens, including Salmonella. Strong links between manganese (Mn) and intestinal barrier or immune function hint that dietary Mn supplementation is likely to be a promising approach to limit the loads of pathogens in broilers. Here, we provide evidence that Salmonella Typhimurium (S. Typhimurium, 4 Ă— 108 CFUs) challenge-induced intestinal injury along with systemic Mn redistribution in broilers. Further examining of the effect of dietary Mn treatments (a basal diet plus additional 0, 40, or 100 mg Mn/kg for corresponding to Mn-deficient, control, or Mn-surfeit diet, respectively) on intestinal barrier and inflammation status of broilers infected with S. Typhimurium revealed that birds fed the control and Mn-surfeit diets exhibited improved intestinal tight junctions and microbiota composition. Even without Salmonella infection, dietary Mn deficiency alone increased intestinal permeability by impairing intestinal tight junctions. In addition, when fed the control and Mn-surfeit diets, birds showed decreased Salmonella burdens in cecal content and spleen, with a concomitant increase in inflammatory cytokine levels in spleen. Furthermore, the dietary Mn-supplementation-mediated induction of cytokine production was probably associated with the nuclear factor kappa-B (NF-ÎşB)/hydrogen peroxide (H2O2) pathway, as judged by the enhanced manganese superoxide dismutase activity and the increased H2O2 level in mitochondria, together with the increased mRNA level of NF-ÎşB in spleen. Ingenuity-pathway analysis indicated that acute-phase response pathways, T helper type 1 pathway, and dendritic cell maturation were significantly activated by the dietary Mn supplementation. Our data suggest that dietary Mn supplementation could enhance intestinal barrier and splenic inflammatory response to fight against Salmonella infection in broilers

    Data sharing in the age of predictive psychiatry: an adolescent perspective

    Get PDF
    Background: Advances in genetics and digital phenotyping in psychiatry have given rise to testing services targeting young people, which claim to predict psychiatric outcomes before difficulties emerge. These services raise several ethical challenges surrounding data sharing and information privacy. Objectives: This study aimed to investigate young people’s interest in predictive testing for mental health challenges and their attitudes towards sharing biological, psychosocial and digital data for such purpose. Methods: Eighty UK adolescents aged 16–18 years took part in a digital role-play where they played the role of clients of a fictional predictive psychiatry company and chose what sources of personal data they wished to provide for a risk assessment. After the role-play, participants reflected on their choices during a peer-led interview. Findings: Participants saw multiple benefits in predictive testing services, but were highly selective with regard to the type of data they were willing to share. Largely due to privacy concerns, digital data sources such as social media or Google search history were less likely to be shared than psychosocial and biological data, including school grades and one’s DNA. Participants were particularly reluctant to share social media data with schools (but less so with health systems). Conclusions: Emerging predictive psychiatric services are valued by young people; however, these services must consider privacy versus utility trade-offs from the perspective of different stakeholders, including adolescents. Clinical implications: Respecting adolescents’ need for transparency, privacy and choice in the age of digital phenotyping is critical to the responsible implementation of predictive psychiatric services

    The global landscape of approved antibody therapies

    Get PDF
    Antibody therapies have become an important class of therapeutics in recent years as they have exhibited outstanding efficacy and safety in the treatment of several major diseases including cancers, immune-related diseases, infectious disease and hematological disease. There has been significant progress in the global research and development landscape of antibody therapies in the past decade. In this review, we have collected available data from the Umabs Antibody Therapies Database (Umabs-DB, https://umabs.com) as of 30 June 2022. The Umabs-DB shows that 162 antibody therapies have been approved by at least one regulatory agency in the world, including 122 approvals in the US, followed by 114 in Europe, 82 in Japan and 73 in China, whereas biosimilar, diagnostic and veterinary antibodies are not included in our statistics. Although the US and Europe have been at the leading position for decades, rapid advancement has been witnessed in Japan and China in the past decade. The approved antibody therapies include 115 canonical antibodies, 14 antibody-drug conjugates, 7 bispecific antibodies, 8 antibody fragments, 3 radiolabeled antibodies, 1 antibody-conjugate immunotoxin, 2 immunoconjugates and 12 Fc-Fusion proteins. They have been developed against 91 drug targets, of which PD-1 is the most popular, with 14 approved antibody-based blockades for cancer treatment in the world. This review outlined the global landscape of the approved antibody therapies with respect to the regulation agencies, therapeutic targets and indications, aiming to provide an insight into the trends of the global development of antibody therapies

    Inversion of soil carbon, nitrogen, and phosphorus in the Yellow River Wetland of Shaanxi Province using field in situ hyperspectroscopy

    Get PDF
    Soil nitrogen and phosphorus are directly related to soil quality and vegetation growth and are, therefore, a common research topic in studies on global climate change, material cycling, and information exchange in terrestrial ecosystems. However, collecting soil hyperspectral data under in situ conditions and predicting soil properties, which can effectively save time, manpower, material resources, and financial costs, have been generally undervalued. Recent optimization techniques have, however, addressed several of the limitations previously restricting this technique. In this study, hyperspectral data were taken from surface soils under different vegetation types in the wetlands of the Shaanxi Yellow River Wetland Provincial Nature Reserve. Through in situ original and first-order differential transformation spectral data, three prediction models for soil carbon, nitrogen, and phosphorus contents were established: partial least squares (PLSR), random forest (RF), and Gaussian process regression (GPR). The R2 and RMSR of the constructed models were then compared to select the optimal model for evaluating soil content. The soil organic carbon, total nitrogen, and total phosphorus content models established based on the first-order differential had a higher accuracy when modeling and during model validation than those of other models. Moreover, the PLSR model based on the original spectrum and the Gaussian process regression model had a superior inversion performance. These results provide solid theoretical and technical support for developing the optimal model for the quantitative inversion of wetland surface soil carbon, nitrogen, and phosphorus based on in situ hyperspectral technology

    Incentive Mechanisms for Tacit Knowledge-Sharing in Master-Apprentice Pattern Based on The Principal-Agent Theory

    Full text link
    Continual knowledge sharing is the key to improve the competitive ability, operation ability and innovative ability of the organization. Through the comparison of the game theory, knowledge market theory and the principal-agent theory, the principal-agent theory is more suitable for the research on the incentive mechanism of tacit knowledge sharing in master-apprentice Pattern. During the process of tacit knowledge sharing in master-apprentice Pattern, different types of tacit knowledge determine the different design of incentive mechanisms.When the master and the apprentice share the inexpressible tacit knowledge, the organization does not need to design any incentive mechanism for promoting the master’s knowledge sharing.When master and apprentice share the expressible tacit knowledge, the organization needs to design different incentive mechanisms for the master and the apprentice respectively. Moreover the organization needs to take into account the different master-apprentice models in different departments. So the organization needs to design different incentive mechanisms for different departments in order to furtherance the tacit knowledge sharing in master-apprentice pattern

    The presence of autoantibodies is associated with improved overall survival in lung cancer patients

    Get PDF
    ObjectiveAutoantibodies have been reported to be associated with cancers. As a biomarker, autoantibodies have been widely used in the early screening of lung cancer. However, the correlation between autoantibodies and the prognosis of lung cancer patients is poorly understood, especially in the Asian population. This retrospective study investigated the association between the presence of autoantibodies and outcomes in patients with lung cancer.MethodsA total of 264 patients diagnosed with lung cancer were tested for autoantibodies in Henan Provincial People’s Hospital from January 2017 to June 2022. The general clinical data of these patients were collected, and after screening out those who met the exclusion criteria, 151 patients were finally included in the study. The Cox proportional hazards model was used to analyze the effect of autoantibodies on the outcomes of patients with lung cancer. The Kaplan-Meier curve was used to analyze the relationship between autoantibodies and the overall survival of patients with lung cancer.ResultsCompared to lung cancer patients without autoantibodies, those with autoantibodies had an associated reduced risk of death (HRs: 0.45, 95% CIs 0.27~0.77), independent of gender, age, smoking history, pathological type, and pathological stage of lung cancer. Additionally, the association was found to be more significant by subgroup analysis in male patients, younger patients, and patients with small cell lung cancer. Furthermore, lung cancer patients with autoantibodies had significantly longer survival time than those without autoantibodies.ConclusionThe presence of autoantibodies is an independent indicator of good prognosis in patients with lung cancer, providing a new biomarker for prognostic evaluation in patients with lung cancer
    • …
    corecore