170 research outputs found

    Adsorption–desorption behavior of malachite green by potassium permanganate pre-oxidation polyvinyl chloride microplastics

    Get PDF
    Microplastics (MPs) and the typical hydrophilic organic pollutant Malachite green (MG) are frequently detected in sewage treatment plants. Potassium permanganate (KMnO4) pre-oxidation is an economical and effective technology in wastewater treatment. It is important to study the surface physicochemical characteristics of MPs and understand their fate in wastewater treatment plants after pre-oxidation. In this study, Polyvinyl chloride (PVC) MPs were treated by single and composite KMnO4 pre-oxidation with different pH values. After the pre-oxidation treatment, the appearance of Osingle bondMn spectra and surface nanoparticles indicated the oxides (MnO2) were produced on the MPs surface. Moreover, the adhesion of MnO2 is helpful to improve the hydrophilicity and adsorption capacity of MG. The adsorption capacity of pristine PVC for MG was 2.6 mg/g. But the adsorption capacity increased to 7.0 mg/g for single oxidation and 140.7 mg/g for composite oxidation, respectively. The desorption experiment results indicate the pre-oxidation process could reduce the release efficiency of MG from the PVC MPs due to the better binding of surface MnO2 nanoparticles to MG. However, the total desorption capacity is still high. which illustrates that there is a high potential risk of MG which can transfer from the surface of the PVC MPs to the gastrointestinal fluids.publishedVersio

    Comparing the adsorption of methyl orange and malachite green on similar yet distinct polyamide microplastics: Uncovering hydrogen bond interactions

    Get PDF
    Microplastics (MPs) and dye pollutants are widespread in aquatic environments. Here, the adsorption characteristics of anionic dye methyl orange (MO) and cationic dye malachite green (MG) on polyamide 6 (PA6) and polyamide 66 (PA66) MPs were investigated, including kinetics, isotherm equilibrium and thermodynamics. The co-adsorption of MO and MG under different pH was also evaluated. The results reveal that the adsorption process of MO and MG is suitably expounded by a pseudo-second-order kinetic model. The process can be characterized by two stages: internal diffusion and external diffusion. The isothermal adsorption equilibrium of MO and MG can be effectively described using the Langmuir model, signifying monolayer adsorption. Furthermore, the thermodynamic results indicated that the adsorption was spontaneous with exothermic and endothermic properties, respectively. The results of binary systems reveal that MO dominates the adsorption at low pH (2–5), while MG dominates at high pH (8–10). Strong competitive adsorption was observed between MO and MG in neutral conditions (pH 6–8). The desorption experiments confirm that PA6 and PA66 could serve as potential carriers of MO and MG. The interaction between dyes and polyamide MPs is primarily mediated through hydrogen bonds and electrostatic attraction. The results reveal that PA6 formed more hydrogen bonds with the dyes, resulting in higher adsorption capacity than that of PA66. This difference can be attributed to the disparities in the synthesis process and polymerization method. Our study uncovered the adsorption mechanism of dye pollutants on PA6 and PA66, and provided a more comprehensive theoretical basis for the risk assessment concerning different types of polyamide MPs in aquatic environments.publishedVersio

    AZI23'UTR Is a New SLC6A3 Downregulator Associated with an Epistatic Protection Against Substance Use Disorders

    Get PDF
    Regulated activity of SLC6A3, which encodes the human dopamine transporter (DAT), contributes to diseases such as substance abuse disorders (SUDs); however, the exact transcription mechanism remains poorly understood. Here, we used a common genetic variant of the gene, intron 1 DNP1B sequence, as bait to screen and clone a new transcriptional activity, AZI23'UTR, for SLC6A3. AZI23'UTR is a 3' untranslated region (3'UTR) of the human 5-Azacytidine Induced 2 gene (AZI2) but appeared to be transcribed independently of AZI2. Found to be present in both human cell nuclei and dopamine neurons, this RNA was shown to downregulate promoter activity through a variant-dependent mechanism in vitro. Both reduced RNA density ratio of AZI23'UTR/AZI2 and increased DAT mRNA levels were found in ethanol-naive alcohol-preferring rats. Secondary analysis of dbGaP GWAS datasets (Genome-Wide Association Studies based on the database of Genotypes and Phenotypes) revealed significant interactions between regions upstream of AZI23'UTR and SLC6A3 in SUDs. Jointly, our data suggest that AZI23'UTR confers variant-dependent transcriptional regulation of SLC6A3, a potential risk factor for SUDs

    Desorption of sulfamethoxazole from polyamide 6 microplastics: Environmental factors, simulated gastrointestinal fluids, and desorption mechanisms

    Get PDF
    Microplastics (MPs) can enrich pollutants after being released into the environment, and the contaminants-loaded MPs are usually ingested by organisms, resulting in a potential dual biotoxic effect. In this paper, the adsorption behavior of Sulfamethoxazole (SMX) on Polyamide 6 (PA6) MPs was systematically investigated and simulated by the kinetic and isotherm models. The effect of environmental conditions (pH, salinity) on the adsorption process was studied, and the desorption behavior of SMX-loaded PA6 MPs was focused on simulating the seawater, ultrapure water, gastric and intestinal fluids. We found that lower pH and solubilization of SMX by gastrointestinal components (bovine serum albumin (BSA), sodium taurocholate (NaT), and pepsin) can reduce the electrostatic interaction between the surface charge of PA6 MPs and SMX. The result will lead to an increase in the desorption capacity of SMX-loaded PA6 MPs in gastrointestinal fluids and therefore will provide a reasonable mechanism for the desorption of SMX-loaded PA6 MPs in the gastrointestinal fluids. This study will provide a theoretical reference for studying the desorption behavior of SMX-loaded PA6 MPs under gastrointestinal conditions.publishedVersio

    Inbound Marketing

    Get PDF
    This study looks into inbound marketing practice through the process of secondary research. This insight on best practices and market examples have been employed in order to identify the benefits of Inbound Marketing for the School of Professional Studies at Clark University. Through the research, this team has consolidated a number of recommendations for the SPS marketing strategies moving forward. A focus has been placed on identifying solutions, which were effective and financially feasible. The primary solutions are internally sourced; with a future long term recommendation of seeking advice from a third party firm to automate the process

    Coral-algal interactions at Weizhou Island in the northern South China Sea: variations by taxa and the exacerbating impact of sediments trapped in turf algae

    Get PDF
    Competitive interactions between corals and benthic algae are increasingly frequent on degrading coral reefs, but the processes and mechanisms surrounding the interactions, as well as the exacerbating effects of sediments trapped in turf algae, are poorly described. We surveyed the frequency, proportion, and outcomes of interactions between benthic algae (turf algae and macroalgae) and 631 corals (genera: Porites, Favites, Favia, Platygyra, and Pavona) on a degenerating reef in the northern South China Sea, with a specific focus on the negative effects of algal contact on corals. Our data indicated that turf algae were the main algal competitors for each surveyed coral genus and the proportion of algal contact along the coral edges varied significantly among the coral genera and the algal types. The proportions of algal wins between corals and turf algae or macroalgae differed significantly among coral genera. Compared to macroalgae, turf algae consistently yielded more algal wins and fewer coral wins on all coral genera. Amongst the coral genera, Porites was the most easily damaged by algal competition. The proportions of turf algal wins on the coral genera increased 1.1–1.9 times in the presence of sediments. Furthermore, the proportions of algal wins on massive and encrusting corals significantly increased with the combination of sediments and turf algae as the algal type. However, the variation in proportions of algal wins between massive and encrusting corals disappeared as sediments became trapped in turf algae. Sediments bound within turf algae further induced damage to corals and reduced the competitive advantage of the different coral growth forms in their competitive interactions with adjacent turf algae

    A new diagnostic tool for brain disorders: extracellular vesicles derived from neuron, astrocyte, and oligodendrocyte

    Get PDF
    Brain disorders are the leading cause of disability worldwide, affecting people’s quality of life and causing economic burdens. The current clinical diagnosis of brain disorders relies solely on individual phenotypes and lacks accurate molecular biomarkers. An emerging field of research centers around extracellular vesicles (EVs), nanoscale membrane vesicles which can easily cross the blood–brain barrier. EVs in the blood are derived from various tissues, including the brain. Therefore, purifying central nervous system (CNS)-derived EVs from the blood and analyzing their contents may be a relatively non-invasive way to analyze brain molecular alterations and identify biomarkers in brain disorders. Recently, methods for capturing neuron-derived EVs (NDEs), astrocyte-derived EVs (ADEs), and oligodendrocyte-derived EVs (ODEs) in peripheral blood were reported. In this article, we provide an overview of the research history of EVs in the blood, specifically focusing on biomarker findings in six major brain disorders (Alzheimer’s disease, Parkinson’s disease, schizophrenia, bipolar disorder, depression, and autism spectrum disorder). Additionally, we discuss the methodology employed for testing CNS-derived EVs. Among brain disorders, Alzheimer’s disease has received the most extensive attention in EV research to date. Most studies focus on specific molecules, candidate proteins, or miRNAs. Notably, the most studied molecules implicated in the pathology of these diseases, such as Aβ, tau, and α-synuclein, exhibit good reproducibility. These findings suggest that CNS-derived EVs can serve as valuable tools for observing brain molecular changes minimally invasively. However, further analysis is necessary to understand the cargo composition of these EVs and improve isolation methods. Therefore, research efforts should prioritize the analysis of CNS-derived EVs’ origin and genome-wide biomarker discovery studies

    Efficient Photon Upconversion Enabled by Strong Coupling Between Organic Molecules and Quantum Dots

    Full text link
    Hybrid structures formed between organic molecules and inorganic quantum dots can accomplish unique photophysical transformations by taking advantage of their disparate properties. The electronic coupling between these materials is typically weak, leading photoexcited charge carriers to spatially localize to a dot or a molecule at its surface. However, we show that by converting a chemical linker that covalently binds anthracene molecules to silicon quantum dots from a carbon-carbon single bond to a double bond, we access a strong-coupling regime where excited carriers spatially delocalize across both anthracene and silicon. By pushing the system to delocalize, we design a photon upconversion system with a higher efficiency (17.2%) and lower threshold intensity (0.5 W/cm^2) than that of a corresponding weakly-coupled system. Our results show that strong coupling between molecules and nanostructures achieved through targeted linking chemistry provides a new route for tailoring properties in materials for light-driven applications.Comment: 33 pages (20 in main text, 13 in supporting information), 12 figures (5 in main text, 7 in supporting information
    • …
    corecore