10 research outputs found

    Activation of autophagy by in situ Zn2+ chelation reaction for enhanced tumor chemoimmunotherapy

    No full text
    Chemotherapy can induce a robust T cell antitumor immune response by triggering immunogenic cell death (ICD), a process in which tumor cells convert from nonimmunogenic to immunogenic forms. However, the antitumor immune response of ICD remains limited due to the low immunogenicity of tumor cells and the immunosuppressive tumor microenvironment. Although autophagy is involved in activating tumor immunity, the synergistic role of autophagy in ICD remains elusive and challenging. Herein, we report an autophagy amplification strategy using an ion-chelation reaction to augment chemoimmunotherapy in cancer treatments based on zinc ion (Zn2+)-doped, disulfiram (DSF)-loaded mesoporous silica nanoparticles (DSF@Zn-DMSNs). Upon pH-sensitive biodegradation of DSF@Zn-DMSNs, Zn2+ and DSF are coreleased in the mildly acidic tumor microenvironment, leading to the formation of toxic Zn2+ chelate through an in situ chelation reaction. Consequently, this chelate not only significantly stimulates cellular apoptosis and generates damage-associated molecular patterns (DAMPs) but also activates autophagy, which mediates the amplified release of DAMPs to enhance ICD. In vivo results demonstrated that DSF@Zn-DMSNs exhibit strong therapeutic efficacy via in situ ion chelation and possess the ability to activate autophagy, thus enhancing immunotherapy by promoting the infiltration of T cells. This study provides a smart in situ chelation strategy with tumor microenvironment-responsive autophagy amplification to achieve high tumor chemoimmunotherapy efficacy and biosafety

    Targeting inorganic nanoparticles to tumors using biological membrane‐coated technology

    No full text
    Abstract Inorganic nanoparticles have extensively revolutionized the effectiveness of cancer therapeutics due to their distinct physicochemical properties. However, the therapeutic efficiency of inorganic nanoparticles is greatly hampered by the complex tumor microenvironment, patient heterogeneity, and systemic nonspecific toxicity. The biomimetic technology based on biological membranes (cell‐ or bacteria‐derived membranes) is a promising strategy to confer unique characteristics to inorganic nanoparticles, such as superior biocompatibility, prolonged circulation time, immunogenicity, homologous tumor targeting, and flexible engineering approaches on the surface, resulting in the enhanced therapeutic efficacy of inorganic nanoparticles against cancer. Therefore, a greater push toward developing biomimetic‐based nanotechnology could increase the specificity and potency of inorganic nanoparticles for effective cancer treatment. In this review, we summarize the recent advances in biological membrane‐coated inorganic nanoparticles in cancer precise therapy and highlight the different types of engineered approaches, applications, mechanisms, and future perspectives. The surface engineering of biological membrane can greatly enhance their targeting, intelligence, and functionality, thereby realizing stronger tumor therapy effects. Further advances in materials science, biomedicine, and oncology can facilitate the clinical translation of biological membrane‐coated inorganic nanoparticles

    Destroying pathogen-tumor symbionts synergizing with catalytic therapy of colorectal cancer by biomimetic protein-supported single-atom nanozyme

    No full text
    Abstract The crucial role of intratumoral bacteria in the progression of cancer has been gradually recognized with the development of sequencing technology. Several intratumoral bacteria which have been identified as pathogens of cancer that induce progression, metastasis, and poor outcome of cancer, while tumor vascular networks and immunosuppressive microenvironment provide shelters for pathogens localization. Thus, the mutually-beneficial interplay between pathogens and tumors, named “pathogen-tumor symbionts”, is probably a potential therapeutic site for tumor treatment. Herein, we proposed a destroying pathogen-tumor symbionts strategy that kills intratumoral pathogens, F. nucleatum, to break the symbiont and synergize to kill colorectal cancer (CRC) cells. This strategy was achieved by a groundbreaking protein-supported copper single-atom nanozyme (BSA-Cu SAN) which was inspired by the structures of native enzymes that are based on protein, with metal elements as the active center. BSA-Cu SAN can exert catalytic therapy by generating reactive oxygen species (ROS) and depleting GSH. The in vitro and in vivo experiments demonstrate that BSA-Cu SAN passively targets tumor sites and efficiently scavenges F. nucleatum in situ to destroy pathogen-tumor symbionts. As a result, ROS resistance of CRC through elevated autophagy mediated by F. nucleatum was relieved, contributing to apoptosis of cancer cells induced by intracellular redox imbalance generated by BSA-Cu SAN. Particularly, BSA-Cu SAN experiences renal clearance, avoiding long-term systemic toxicity. This work provides a feasible paradigm for destroying pathogen-tumor symbionts to block intratumoral pathogens interplay with CRC for antitumor therapy and an optimized trail for the SAN catalytic therapy by the clearable protein-supported SAN

    DataSheet_1_Pyruvate: Ferredoxin oxidoreductase is involved in IgA-related microbiota dysbiosis and intestinal inflammation.xlsx

    No full text
    IntroductionInflammatory bowel diseases (IBDs) are associated with both immune abnormalities and dysbiosis, characterized by a loss of Faecalibacterium prausnitzii (F. prausnitzii). However, the reason for F. prausnitzii deficiency remains unclear.Methods16S rDNA seque­ncing and IgA enzyme-linked immunosorbent assay (ELISA) were applied to identify bacterial community and IgA changes in ulcerative colitis (UC) patients. Forced immunization with F. prausnitzii in rabbits was conducted. To screen for potential IgA-reactive proteins in F. prausnitzii lysates, we performed western blotting and mass spectrometry analyses. Pyruvate: ferredoxin oxidoreductase (PFOR) was cloned and purified, then the immunoreactivity of PFOR was verified in peripheral blood mononuclear cells (PBMCs) through PCR, ELISpot assay and single-cell sequencing (scRNA-seq). Finally, the UC fecal dysbiosis was re-analyzed in the context of the phylogenetic tree of PFOR.ResultsF. prausnitzii was underrepresented in UC patients with elevated F. prausnitzii-reactive IgA in the fecal supernatant. Forced immunization with F. prausnitzii in rabbits led to high interferon-γ (IFN-γ) transcription in the colon, along with beta diversity disturbance and intestinal inflammation. PFOR was identified as an IgA-binding antigen of F. prausnitzii and the immunoreactivity was validated in PBMCs, which showed elevated expression of inflammatory cytokines. The scRNA-seq revealed enhanced signals in both T regulatory cells (Tregs) and monocytes after PFOR incubation. Furthermore, phylogenetic analysis revealed that PFOR was a common but conserved protein among the gut bacteria.DiscussionOur results collectively suggest that PFOR is a bioactive protein in the immune system and may contribute to host-microbial crosstalk. Conserved but bioactive microbial proteins, such as PFOR, warrant more attention in future host-microbial interaction studies.</p

    DataSheet_3_Pyruvate: Ferredoxin oxidoreductase is involved in IgA-related microbiota dysbiosis and intestinal inflammation.xlsx

    No full text
    IntroductionInflammatory bowel diseases (IBDs) are associated with both immune abnormalities and dysbiosis, characterized by a loss of Faecalibacterium prausnitzii (F. prausnitzii). However, the reason for F. prausnitzii deficiency remains unclear.Methods16S rDNA seque­ncing and IgA enzyme-linked immunosorbent assay (ELISA) were applied to identify bacterial community and IgA changes in ulcerative colitis (UC) patients. Forced immunization with F. prausnitzii in rabbits was conducted. To screen for potential IgA-reactive proteins in F. prausnitzii lysates, we performed western blotting and mass spectrometry analyses. Pyruvate: ferredoxin oxidoreductase (PFOR) was cloned and purified, then the immunoreactivity of PFOR was verified in peripheral blood mononuclear cells (PBMCs) through PCR, ELISpot assay and single-cell sequencing (scRNA-seq). Finally, the UC fecal dysbiosis was re-analyzed in the context of the phylogenetic tree of PFOR.ResultsF. prausnitzii was underrepresented in UC patients with elevated F. prausnitzii-reactive IgA in the fecal supernatant. Forced immunization with F. prausnitzii in rabbits led to high interferon-γ (IFN-γ) transcription in the colon, along with beta diversity disturbance and intestinal inflammation. PFOR was identified as an IgA-binding antigen of F. prausnitzii and the immunoreactivity was validated in PBMCs, which showed elevated expression of inflammatory cytokines. The scRNA-seq revealed enhanced signals in both T regulatory cells (Tregs) and monocytes after PFOR incubation. Furthermore, phylogenetic analysis revealed that PFOR was a common but conserved protein among the gut bacteria.DiscussionOur results collectively suggest that PFOR is a bioactive protein in the immune system and may contribute to host-microbial crosstalk. Conserved but bioactive microbial proteins, such as PFOR, warrant more attention in future host-microbial interaction studies.</p

    DataSheet_4_Pyruvate: Ferredoxin oxidoreductase is involved in IgA-related microbiota dysbiosis and intestinal inflammation.docx

    No full text
    IntroductionInflammatory bowel diseases (IBDs) are associated with both immune abnormalities and dysbiosis, characterized by a loss of Faecalibacterium prausnitzii (F. prausnitzii). However, the reason for F. prausnitzii deficiency remains unclear.Methods16S rDNA seque­ncing and IgA enzyme-linked immunosorbent assay (ELISA) were applied to identify bacterial community and IgA changes in ulcerative colitis (UC) patients. Forced immunization with F. prausnitzii in rabbits was conducted. To screen for potential IgA-reactive proteins in F. prausnitzii lysates, we performed western blotting and mass spectrometry analyses. Pyruvate: ferredoxin oxidoreductase (PFOR) was cloned and purified, then the immunoreactivity of PFOR was verified in peripheral blood mononuclear cells (PBMCs) through PCR, ELISpot assay and single-cell sequencing (scRNA-seq). Finally, the UC fecal dysbiosis was re-analyzed in the context of the phylogenetic tree of PFOR.ResultsF. prausnitzii was underrepresented in UC patients with elevated F. prausnitzii-reactive IgA in the fecal supernatant. Forced immunization with F. prausnitzii in rabbits led to high interferon-γ (IFN-γ) transcription in the colon, along with beta diversity disturbance and intestinal inflammation. PFOR was identified as an IgA-binding antigen of F. prausnitzii and the immunoreactivity was validated in PBMCs, which showed elevated expression of inflammatory cytokines. The scRNA-seq revealed enhanced signals in both T regulatory cells (Tregs) and monocytes after PFOR incubation. Furthermore, phylogenetic analysis revealed that PFOR was a common but conserved protein among the gut bacteria.DiscussionOur results collectively suggest that PFOR is a bioactive protein in the immune system and may contribute to host-microbial crosstalk. Conserved but bioactive microbial proteins, such as PFOR, warrant more attention in future host-microbial interaction studies.</p

    DataSheet_2_Pyruvate: Ferredoxin oxidoreductase is involved in IgA-related microbiota dysbiosis and intestinal inflammation.xlsx

    No full text
    IntroductionInflammatory bowel diseases (IBDs) are associated with both immune abnormalities and dysbiosis, characterized by a loss of Faecalibacterium prausnitzii (F. prausnitzii). However, the reason for F. prausnitzii deficiency remains unclear.Methods16S rDNA seque­ncing and IgA enzyme-linked immunosorbent assay (ELISA) were applied to identify bacterial community and IgA changes in ulcerative colitis (UC) patients. Forced immunization with F. prausnitzii in rabbits was conducted. To screen for potential IgA-reactive proteins in F. prausnitzii lysates, we performed western blotting and mass spectrometry analyses. Pyruvate: ferredoxin oxidoreductase (PFOR) was cloned and purified, then the immunoreactivity of PFOR was verified in peripheral blood mononuclear cells (PBMCs) through PCR, ELISpot assay and single-cell sequencing (scRNA-seq). Finally, the UC fecal dysbiosis was re-analyzed in the context of the phylogenetic tree of PFOR.ResultsF. prausnitzii was underrepresented in UC patients with elevated F. prausnitzii-reactive IgA in the fecal supernatant. Forced immunization with F. prausnitzii in rabbits led to high interferon-γ (IFN-γ) transcription in the colon, along with beta diversity disturbance and intestinal inflammation. PFOR was identified as an IgA-binding antigen of F. prausnitzii and the immunoreactivity was validated in PBMCs, which showed elevated expression of inflammatory cytokines. The scRNA-seq revealed enhanced signals in both T regulatory cells (Tregs) and monocytes after PFOR incubation. Furthermore, phylogenetic analysis revealed that PFOR was a common but conserved protein among the gut bacteria.DiscussionOur results collectively suggest that PFOR is a bioactive protein in the immune system and may contribute to host-microbial crosstalk. Conserved but bioactive microbial proteins, such as PFOR, warrant more attention in future host-microbial interaction studies.</p

    ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy

    No full text
    APOE4 is the strongest genetic risk factor for late-onset Alzheimer disease. ApoE4 increases brain amyloid-β pathology relative to other ApoE isoforms. However, whether APOE independently influences tau pathology, the other major proteinopathy of Alzheimer disease and other tauopathies, or tau-mediated neurodegeneration, is not clear. By generating P301S tau transgenic mice on either a human ApoE knock-in (KI) or ApoE knockout (KO) background, here we show that P301S/E4 mice have significantly higher tau levels in the brain and a greater extent of somatodendritic tau redistribution by three months of age compared with P301S/E2, P301S/E3, and P301S/EKO mice. By nine months of age, P301S mice with different ApoE genotypes display distinct phosphorylated tau protein (p-tau) staining patterns. P301S/E4 mice develop markedly more brain atrophy and neuroinflammation than P301S/E2 and P301S/E3 mice, whereas P301S/EKO mice are largely protected from these changes. In vitro, E4-expressing microglia exhibit higher innate immune reactivity after lipopolysaccharide treatment. Co-culturing P301S tau-expressing neurons with E4-expressing mixed glia results in a significantly higher level of tumour-necrosis factor-α (TNF-α) secretion and markedly reduced neuronal viability compared with neuron/E2 and neuron/E3 co-cultures. Neurons co-cultured with EKO glia showed the greatest viability with the lowest level of secreted TNF-α. Treatment of P301S neurons with recombinant ApoE (E2, E3, E4) also leads to some neuronal damage and death compared with the absence of ApoE, with ApoE4 exacerbating the effect. In individuals with a sporadic primary tauopathy, the presence of an ε4 allele is associated with more severe regional neurodegeneration. In individuals who are positive for amyloid-β pathology with symptomatic Alzheimer disease who usually have tau pathology, ε4-carriers demonstrate greater rates of disease progression. Our results demonstrate that ApoE affects tau pathogenesis, neuroinflammation, and tau-mediated neurodegeneration independently of amyloid-β pathology. ApoE4 exerts a 'toxic' gain of function whereas the absence of ApoE is protective
    corecore