5,509 research outputs found
Spin-dependent tunneling through a symmetric semiconductor barrier: the Dresselhaus effect
Spin-dependent tunneling through a symmetric semiconductor barrier is studied
including the k^3 Dresselhaus effect. The spin-dependent transmission of
electron can be obtained analytically. By comparing with previous work(Phys.
Rev. B 67. R201304 (2003) and Phys. Rev. Lett. 93. 056601 (2004)), it is shown
that the spin polarization and interface current are changed significantly by
including the off-diagonal elements in the current operator, and can be
enhanced considerably by the Dresselhaus effect in the contact regions.Comment: 10 pages, 5 figures, to appear in PR
Study the Heavy Molecular States in Quark Model with Meson Exchange Interaction
Some charmonium-like resonances such as X(3872) can be interpreted as
possible molecular states. Within the quark model, we study
the structure of such molecular states and the similar
molecular states by taking into account of the light meson exchange (,
, , and ) between two light quarks from different
mesons
Coalescence and Anti-Coalescence Interference of Two-Photon Wavepacket in a Beam Splitter
We study a general theory on the interference of two-photon wavepacket in a
beam splitter (BS). We find that the perfect coalescence interference requires
a symmetric spectrum of two-photon wavepacket which can be entangled or
un-entangled. Furthermore, we introduce a two-photon wavepacket with
anti-symmetric spectrum, which is related with photon entanglement and shows a
perfect anti-coalescence effect. The theory present uniform and complete
explanation to two-photon interference.Comment: 5 pages, 2 figure
Diagrammatic Quantum Monte Carlo solution of the two-dimensional Cooperon-Fermion model
We investigate the two-dimensional cooperon-fermion model in the correlated
regime with a new continuous-time diagrammatic determinant quantum Monte Carlo
(DDQMC) algorithm. We estimate the transition temperature , examine the
effectively reduced band gap and cooperon mass, and find that delocalization of
the cooperons enhances the diamagnetism. When applied to diamagnetism of the
pseudogap phase in high- cuprates, we obtain results in a qualitative
agreement with recent torque magnetization measurements.Comment: 8 pages, 11 figure
Automated Bruch’s Membrane Opening Segmentation in Cases of Optic Disc Swelling in Combined 2D and 3D SD-OCT Images Using Shape-Prior and Texture Information
When the optic disc is swollen, the visibility of the Bruch’s membrane opening (BMO) is often drastically reduced in spectral-domain optical coherence tomography (SD-OCT) volumes. Recent work pro- posed a semi-automated method to segment the BMO using combined information from 2D high-definition raster and 3D volumetric SD-OCT scans; however, manual placement of six landmark points was required. In this work, we propose a fully automated approach to segment the BMO from 2D high-definition and 3D volumetric SD-OCT scans. Using the topographic shape of the internal limiting membrane and textural information near Bruch’s membrane, two BMO points are first estimated in the high-definition central B-scan and then registered into the corresponding volumetric scan. Utilizing the information from both the high- definition BMO estimates and the standard-definition SD-OCT volume, the cost image was created. A graph-based algorithm with soft shape-based constraints is further applied to segment the BMO contour on the SD-OCT en-face image domain. Using a set of 23 volumes with reasonably centered raster scans and swelling larger than 14.42 mm3, the fully automated approach was significantly more accurate than a traditional approach utilizing information only from the SD-OCT volume (RMS error of 7.18 vs. 21.37 in pixels; p < 0.05) and had only a slightly higher (and not significantly different) error than the previously proposed semi-automated approach (RMS error of 7.18 vs. 5.30 in pixels; p = 0.08)
Forecasting the chaotic dynamics of external cavity semiconductor lasers
Chaotic time series prediction has been paid intense attention in recent years due to its important applications. Herein, we present a single-node photonic reservoir computing approach to forecasting the chaotic behavior of external cavity semiconductor lasers using only observed data. In the reservoir, we employ a semiconductor laser with delay as the sole nonlinear physical node. By investigating the effect of the reservoir meta-parameters on the prediction performance, we numerically demonstrate that there exists an optimal meta-parameter space for forecasting optical-feedback-induced chaos. Simulation results demonstrate that using our method, the upcoming chaotic time series can be continuously predicted for a time period in excess of 2 ns with a normalized mean squared error lower than 0.1. This proposed method only utilizes simple nonlinear semiconductor lasers and thus offers a hardware-friendly approach for complex chaos prediction. In addition, this work may provide a roadmap for the meta-parameter selection of a delay-based photonic reservoir to obtain optimal prediction performance
Identification of H3K4me1-associated proteins at mammalian enhancers.
Enhancers act to regulate cell-type-specific gene expression by facilitating the transcription of target genes. In mammalian cells, active or primed enhancers are commonly marked by monomethylation of histone H3 at lysine 4 (H3K4me1) in a cell-type-specific manner. Whether and how this histone modification regulates enhancer-dependent transcription programs in mammals is unclear. In this study, we conducted SILAC mass spectrometry experiments with mononucleosomes and identified multiple H3K4me1-associated proteins, including many involved in chromatin remodeling. We demonstrate that H3K4me1 augments association of the chromatin-remodeling complex BAF to enhancers in vivo and that, in vitro, H3K4me1-marked nucleosomes are more efficiently remodeled by the BAF complex. Crystal structures of the BAF component BAF45C indicate that monomethylation, but not trimethylation, is accommodated by BAF45C's H3K4-binding site. Our results suggest that H3K4me1 has an active role at enhancers by facilitating binding of the BAF complex and possibly other chromatin regulators
Human Agency in AI Configurations Supporting Organizational Decision-making
The integration of human intelligence with Artificial Intelligence (AI) is becoming increasingly essential for leveraging benefits in organizational decision-making. This necessitates to understand human-AI collaboration configurations for managing collaborative intelligence. However, existing literature on Human-AI collaboration lacks structure and is fragmented regarding what exactly human intelligence (HI) contributes to AI collaboration and how AI systems can be configured in the decision-making process. This paper undertakes an organizing literature review to consolidate insights from existing literature. We identify six types of human agency as involved in collaborative intelligence and synthesize the findings into six Human-AI collaborative configurations explained by a matrix framework. By illuminating the complexities of Human-AI collaboration, the framework sheds light on the need for a nuanced understanding of the imbricating roles of HI and AI in decision-making, with important implications for the design and implementation of AI systems for organizational decision-making
- …