77 research outputs found

    Study of the hot forging of weld cladded work pieces using upsetting tests

    Get PDF
    This paper focuses on the hot forging of multi-material cladded work pieces using upsetting tests. Thecase study corresponds to gas metal arc welding cladding of a SS316L on a mild steel (C15). Experimentaltests and simulations using a slab model and the finite element method were performed using differenttemperatures and die/billet tribological conditions. As a result, a crack mode, specific to clad billets, wasobserved experimentally and can be predicted by the FE method using a Latham and Cockcroft criterion.The material distribution was well simulated by the FE method; in particular, the effects of the frictionat die/work piece interface on the crack occurrence, the material distribution and, to a lesser extent,the forging load are well predicted. However, the latter was underestimated, highlighting the fact thatthe effect of the dilution associated with the cladding process on the material behavior of the clad layercannot be neglected.Région Lorraine HEC of Pakista

    Hydrological Variation Characteristics of Rivers in Humid Region: Oujiang River, China

    Get PDF
    AbstractOujiang River was selected as the case study, and a dataset of daily flow series at Xuren Station was used to explore the hydrologic characteristics of rivers in humid areas, by using the ‘Indicators of Hydrologic Alteration’ approach and ‘Range of Variability Approach’. Results showed that the overall alteration of the hydrological regime for Oujiang River belonged to the low alteration category, and some key eco-hydrological characteristics should be protected in certain key periods to maintain the integrality and health status of river ecosystems

    Towards Fairer and More Efficient Federated Learning via Multidimensional Personalized Edge Models

    Full text link
    Federated learning (FL) is an emerging technique that trains massive and geographically distributed edge data while maintaining privacy. However, FL has inherent challenges in terms of fairness and computational efficiency due to the rising heterogeneity of edges, and thus usually results in sub-optimal performance in recent state-of-the-art (SOTA) solutions. In this paper, we propose a Customized Federated Learning (CFL) system to eliminate FL heterogeneity from multiple dimensions. Specifically, CFL tailors personalized models from the specially designed global model for each client jointly guided by an online trained model-search helper and a novel aggregation algorithm. Extensive experiments demonstrate that CFL has full-stack advantages for both FL training and edge reasoning and significantly improves the SOTA performance w.r.t. model accuracy (up to 7.2% in the non-heterogeneous environment and up to 21.8% in the heterogeneous environment), efficiency, and FL fairness.Comment: 8 pages, 7 figure

    ProCC: Progressive Cross-primitive Consistency for Open-World Compositional Zero-Shot Learning

    Full text link
    Open-World Compositional Zero-shot Learning (OW-CZSL) aims to recognize novel compositions of state and object primitives in images with no priors on the compositional space, which induces a tremendously large output space containing all possible state-object compositions. Existing works either learn the joint compositional state-object embedding or predict simple primitives with separate classifiers. However, the former heavily relies on external word embedding methods, and the latter ignores the interactions of interdependent primitives, respectively. In this paper, we revisit the primitive prediction approach and propose a novel method, termed Progressive Cross-primitive Consistency (ProCC), to mimic the human learning process for OW-CZSL tasks. Specifically, the cross-primitive consistency module explicitly learns to model the interactions of state and object features with the trainable memory units, which efficiently acquires cross-primitive visual attention and avoids cross-primitive feasibility scores. Moreover, considering the partial-supervision setting (pCZSL) as well as the imbalance issue of multiple tasks prediction, we design a progressive training paradigm to enable the primitive classifiers to interact to obtain discriminative information in an easy-to-hard manner. Extensive experiments on three widely used benchmark datasets demonstrate that our method outperforms other representative methods on both OW-CZSL and pCZSL settings by

    Experimental & Numerical Study of the Hot Upsetting of Weld Cladded Billets

    Get PDF
    The presented work is dedicated to studying the forgeability of bimaterial cladded billet. Hot upsetting tests of cylindrical low carbon steel (C15) billets weld cladded (MIG) by stainless steel (SS316L) are experimentally and numerically studied. Upsetting tests with different upsetting ratios are performed in different tribology conditions at 1050°C which is within the better forgeability temperature range of both substrate and cladding materials[ 1 ]. Slab model and finite-element simulation are conducted to parametrically study the potential forgeability of the bimaterial cladded billet. The viscoplastic law is adopted to model the friction at the die/billet interface. The friction condition at the die/billet interface has a great impact on the final material distribution, forging effort and cracking occurrence. With Latham and Cockcroft Criterion, the possibility and potential position of cracks could be predicted

    A new species of the odorous frog genus Odorrana (Amphibia, Anura, Ranidae) from southwestern China

    Get PDF
    The genus Odorrana is widely distributed in the mountains of East and Southeastern Asia. An increasing number of new species in the genus have been recognized especially in the last decade. Phylogenetic studies of the O. schmackeri species complex with wide distributional range also revealed several cryptic species. Here, we describe a new species in the species complex from Guizhou Province of China. Phylogenetic analyses based on mitochondrial DNA indicated the new species as a monophyly clustered into the Odorrana clade and sister to O. schmackeri, and nuclear DNA also indicated it as an independent lineage separated from its related species. Morphologically, the new species can be distinguished from its congeners based on a combination of the following characters: (1) having smaller body size in males (snout-vent length (SVL) <43.3 mm); (2) head longer than wide; (3) dorsolateral folds absent; (4) tympanum of males large and distinct, tympanum diameter twice as long as width of distal phalanx of finger III; (5) two metacarpal tubercles; (6) relative finger lengths: II < I < IV < III; (7) tibiotarsal articulation reaching to the level between eye to nostril when leg stretched forward; (8) disks on digits with circum-marginal grooves; (9) toes fully webbed to disks; (10) the first subarticular tubercle on fingers weak; (11) having white pectoral spinules, paired subgular vocal sacs located at corners of throat, light yellow nuptial pad on the first finger in males

    Imminent extinction in the wild of the world's largest amphibian

    Get PDF
    Species with large geographic ranges are considered resilient to global decline. However, human pressures on biodiversity affect increasingly large areas, in particular across Asia, where market forces drive overexploitation of species. Range-wide threat assessments are often costly and thus extrapolated from non-representative local studies. The Chinese giant salamander (Andrias davidianus), the world’s largest amphibian, is thought to occur across much of China, but populations are harvested for farming as luxury food. Between 2013 and 2016, we conducted field surveys and 2,872 interviews in possibly the largest wildlife survey conducted in China. This extensive effort revealed that populations of this once-widespread species are now critically depleted or extirpated across all surveyed areas of their range, and illegal poaching is widespread

    Well-Dispersed MgAl2O4 Supported Ni Catalyst with Enhanced Catalytic Performance and the Reason of Its Deactivation for Long-Term Dry Methanation Reaction

    No full text
    Dry methanation of syngas is a promising route for synthetic natural gas production because of its water and cost saving characteristics, as we reported previously. Here, we report a simple soaking process for the preparation of well-dispersed Ni/MgAl2O4-E catalyst with an average Ni size of 6.4 nm. The catalytic test results showed that the Ni/MgAl2O4-E catalyst exhibited considerably higher activity and better stability than Ni/MgAl2O4-W catalyst prepared by conventional incipient wetness impregnation method in dry methanation reaction. The long-term stability test result of 335 h has demonstrated that the deactivation of the Ni/MgAl2O4-E catalyst is inevitable. With multiple characterization techniques including ICP, EDS, XRD, STEM, TEM, SEM and TG, we reveal that the graphitic carbon encapsulating Ni nanoparticles are the major reasons responsible for catalyst deactivation, and the rate of carbon deposition decreases with reaction time

    Research on the Cutting Principle and Tool Design of Gear Skiving Based on the Theory of Conjugate Surface

    No full text
    Tool design is one of the key factors that restrict the development of gear skiving technology since the design principle does not correspond to the cutting principle. The existing skiving tool cannot achieve ideal machining accuracy and reasonable cutting angles. In view of this, some research has been done in this paper. Firstly, the skiving principle is investigated essentially according to the skiving motions. Then, the principle of tool design is analyzed based on the theory of conjugate surface, and a new tool design method is proposed to match the skiving principle. For this, all the skiving patterns for various kinds of workpieces are enumerated and summarized to abstract a normalized skiving model. Based on this, the mathematical model of the conjugate surface is then derived to lay the foundation for tool design. Then, the design methods of cutting edge, rake face, and flank face are proposed. An example is presented at last, and the cutting simulation is conducted. The result proves that the proposed methods are correct and valid. The theoretical research in this paper could promote the improvement of skiving tools
    • …
    corecore