306,954 research outputs found

    Environmental Dependence of Cold Dark Matter Halo Formation

    Full text link
    We use a high-resolution NN-body simulation to study how the formation of cold dark matter (CDM) halos is affected by their environments, and how such environmental effects produce the age-dependence of halo clustering observed in recent NN-body simulations. We estimate, for each halo selected at redshift z=0z=0, an `initial' mass MiM_{\rm i} defined to be the mass enclosed by the largest sphere which contains the initial barycenter of the halo particles and within which the mean linear density is equal to the critical value for spherical collapse at z=0z=0. For halos of a given final mass, MhM_{\rm h}, the ratio Mi/MhM_{\rm i}/M_{\rm h} has large scatter, and the scatter is larger for halos of lower final masses. Halos that form earlier on average have larger Mi/MhM_{\rm i}/M_{\rm h}, and so correspond to higher peaks in the initial density field than their final masses imply. Old halos are more strongly clustered than younger ones of the same mass because their initial masses are larger. The age-dependence of clustering for low-mass halos is entirely due to the difference in the initial/final mass ratio. Low-mass old halos are almost always located in the vicinity of big structures, and their old ages are largely due to the fact that their mass accretions are suppressed by the hot environments produced by the tidal fields of the larger structure. The age-dependence of clustering is weaker for more massive halos because the heating by large-scale tidal fields is less important.Comment: 18 pages,19 figures, accepted by MNRA

    Weak coupling d-wave BCS superconductivity and unpaired electrons in overdoped La_{2-x}Sr_{x}CuO_{4} single crystals

    Get PDF
    The low-temperature specific heat (SH) of overdoped La_{2-x}Sr_{x}CuO_{4} single crystals (0.178=<x=<0.290) has been measured. For the superconducting samples (0.178=<x=<0.238), the derived gap values (without any adjusting parameters) approach closely onto the theoretical prediction \Delta_{0}=2.14k_{B}T_{c} for the weak-coupling d-wave BCS superconductivity. In addition, the residual term \gamma(0) of SH at H=0 increases with x dramatically when beyond x~0.22, and finally evolves into the value of a complete normal metallic state at higher doping levels, indicating growing amount of unpaired electrons. We argue that this large \gamma(0) cannot be simply attributed to the pair breaking induced by the impurity scattering, instead the phase separation is possible.Comment: 6 pages, 6 figures; Contents added; Accepted for publication in Phys. Rev.

    On controllability of neuronal networks with constraints on the average of control gains

    Get PDF
    Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control gains injected in driver nodes, which are in accordance with engineering and biological backgrounds. In order to deal with the constraints on control gains, the controllability problem is transformed into a constrained optimization problem (COP). The introduction of the constraints on the control gains unavoidably leads to substantial difficulty in finding feasible as well as refining solutions. As such, a modified dynamic hybrid framework (MDyHF) is developed to solve this COP, based on an adaptive differential evolution and the concept of Pareto dominance. By comparing with statistical methods and several recently reported constrained optimization evolutionary algorithms (COEAs), we show that our proposed MDyHF is competitive and promising in studying the controllability of neuronal networks. Based on the MDyHF, we proceed to show the controlling regions under different levels of constraints. It is revealed that we should allocate the control gains economically when strong constraints are considered. In addition, it is found that as the constraints become more restrictive, the driver nodes are more likely to be selected from the nodes with a large degree. The results and methods presented in this paper will provide useful insights into developing new techniques to control a realistic complex network efficiently

    Energy dependence of Normal Branch Oscillation in Scorpius X-1

    Full text link
    We report the energy dependence of normal branch oscillations (NBOs) in Scorpius X-1, a low-mass X-ray binary Z-source. Three characteristic quantities (centroid frequency, quality factor, and fractional root-mean-squared (rms) amplitude) of a quasi-periodic oscillation signal as functions of photon energy are investigated. We found that, although it is not yet statistically well established, there is a signature indicating that the NBO centroid frequency decreases with increasing photon energy when it is below 6-8 keV, which turns out to be positively correlated with the photon energy at the higher energy side. In addition, the rms amplitude increases significantly with the photon energy below 13 keV and then decreases in the energy band of 13-20 keV. There is no clear dependence on photon energy for the quality factor. Based on these results, we suggest that the NBO originates mainly in the transition layer.Comment: 6 pages, 4 figure
    corecore