85 research outputs found

    The impact of post-trade transparency on price efficiency and price discovery: Evidence from the Taiwan Stock Exchange

    Get PDF
    Purpose The purpose of this paper is to examine the impact of post-trade transparency on price efficiency and price discovery. Design/methodology/approach The authors use an exogeneous change in market transparency in the Taiwan Stock Exchange that mandates the disclosure of unexecuted orders of the five best bid and ask prices after each trade, and conduct an event study analysis. Findings After the change, price efficiency enhances for both large and small firms, although the impact on stock prices is greater when the firm is larger. The authors also find that post-change trading reveals more private information for large firms but more public information for small firms. The findings support the view that transparency has a positive impact on market quality. Originality/value The paper adds to a large body of literature investigating the relationship between transparency and market behavior, especially the ongoing debate about whether trading transparency positively affects price dynamics. The findings also have important policy implications for the regulators

    Time-Restricted Feeding Improves Circadian Dysfunction as well as Motor Symptoms in the Q175 Mouse Model of Huntington's Disease.

    Get PDF
    Huntington's disease (HD) patients suffer from a progressive neurodegeneration that results in cognitive, psychiatric, cardiovascular, and motor dysfunction. Disturbances in sleep/wake cycles are common among HD patients with reports of delayed sleep onset, frequent bedtime awakenings, and fatigue during the day. The heterozygous Q175 mouse model of HD has been shown to phenocopy many HD core symptoms including circadian dysfunctions. Because circadian dysfunction manifests early in the disease in both patients and mouse models, we sought to determine if early intervention that improve circadian rhythmicity can benefit HD and delay disease progression. We determined the effects of time-restricted feeding (TRF) on the Q175 mouse model. At six months of age, the animals were divided into two groups: ad libitum (ad lib) and TRF. The TRF-treated Q175 mice were exposed to a 6-h feeding/18-h fasting regimen that was designed to be aligned with the middle of the time when mice are normally active. After three months of treatment (when mice reached the early disease stage), the TRF-treated Q175 mice showed improvements in their locomotor activity rhythm and sleep awakening time. Furthermore, we found improved heart rate variability (HRV), suggesting that their autonomic nervous system dysfunction was improved. Importantly, treated Q175 mice exhibited improved motor performance compared to untreated Q175 controls, and the motor improvements were correlated with improved circadian output. Finally, we found that the expression of several HD-relevant markers was restored to WT levels in the striatum of the treated mice using NanoString gene expression assays

    Photoacoustic microscopy of human teeth

    Get PDF
    Photoacoustic microscopy (PAM) utilizes short laser pulses to deposit energy into light absorbers and sensitively detects the ultrasonic waves the absorbers generate in response. PAM directly renders a three-dimensional spatial distribution of sub-surface optical absorbers. Unlike other optical imaging technologies, PAM features label-free optical absorption contrast and excellent imaging depths. Standard dental imaging instruments are limited to X-ray and CCD cameras. Subsurface optical dental imaging is difficult due to the highly-scattering enamel and dentin tissue. Thus, very few imaging methods can detect dental decay or diagnose dental pulp, which is the innermost part of the tooth, containing the nerves, blood vessels, and other cells. Here, we conducted a feasibility study on imaging dental decay and dental pulp with PAM. Our results showed that PAM is sensitive to the color change associated with dental decay. Although the relative PA signal distribution may be affected by surface contours and subsurface reflections from deeper dental tissue, monitoring changes in the PA signals (at the same site) over time is necessary to identify the progress of dental decay. Our results also showed that deep-imaging, near-infrared (NIR) PAM can sensitively image blood in the dental pulp of an in vitro tooth. In conclusion, PAM is a promising tool for imaging both dental decay and dental pulp

    Uninterrupted CAG repeat drives striatum-selective transcriptionopathy and nuclear pathogenesis in human Huntingtin BAC mice

    Get PDF
    In Huntington's disease (HD), the uninterrupted CAG repeat length, but not the polyglutamine length, predicts disease onset. However, the underlying pathobiology remains unclear. Here, we developed bacterial artificial chromosome (BAC) transgenic mice expressing human mutant huntingtin (mHTT) with uninterrupted, and somatically unstable, CAG repeats that exhibit progressive disease-related phenotypes. Unlike prior mHTT transgenic models with stable, CAA-interrupted, polyglutamine-encoding repeats, BAC-CAG mice show robust striatum-selective nuclear inclusions and transcriptional dysregulation resembling those in murine huntingtin knockin models and HD patients. Importantly, the striatal transcriptionopathy in HD models is significantly correlated with their uninterrupted CAG repeat length but not polyglutamine length. Finally, among the pathogenic entities originating from mHTT genomic transgenes and only present or enriched in the uninterrupted CAG repeat model, somatic CAG repeat instability and nuclear mHTT aggregation are best correlated with early-onset striatum-selective molecular pathogenesis and locomotor and sleep deficits, while repeat RNA-associated pathologies and repeat-associated non-AUG (RAN) translation may play less selective or late pathogenic roles, respectively

    Recent work on sprite spectrum in Taiwan

    Full text link
    campaigns in Taiwan. We first introduce two types of spectroimagers, the slit and slitless types, and discuss their advantages and shortcomings. Next we explore the instrument development and procedures undertaken for this study. In 2006, a slit spectroimager was installed for a sprite campaign and on 15 August of that year, two sprite spectra were recorded using the slit spectroimager along with seven sprites, one halo, one ELVES emission and two jets. By the end of 2015, a slitless spectroimager had been successfully constructed and was ready to conduct additional investigations. On 7 May 2016, a sprite spectrum was recorded using the slitless spectroimager. Following an examination of the calibrations (comprising detection region field of view, wavelength calibration, and response curve), data analysis, and additional calibrations (comprising elevation and azimuthal angles, atmospheric transmittance, and theoretical wavelength calculations) performed in this study, we present the results from our observed sprite spectra using the slit and slitless spectroimagers

    Sleep/Wake Disruption in a Mouse Model of BLOC-1 Deficiency

    Get PDF
    Mice lacking a functional Biogenesis of Lysosome-related Organelles Complex 1 (BLOC-1), such as those of the pallid line, display cognitive and behavioural impairments reminiscent of those presented by individuals with intellectual and developmental disabilities. Although disturbances in the sleep/wake cycle are commonly lamented by these individuals, the underlying mechanisms, including the possible role of the circadian timing system, are still unknown. In this paper, we have explored sleep/circadian malfunctions and underlying mechanisms in BLOC-1-deficient pallid mice. These mutants exhibited less sleep behaviour in the beginning of the resting phase than wild-type mice with a more broken sleeping pattern in normal light-dark conditions. Furthermore, the strength of the activity rhythms in the mutants were reduced with significantly more fragmentation and lower precision than in age-matched controls. These symptoms were accompanied by an abnormal preference for the open arm in the elevated plus maze in the day and poor performance in the novel object recognition at night. At the level of the central circadian clock (the suprachiasmatic nucleus, SCN), loss of BLOC-1 caused subtle morphological changes including a larger SCN and increased expression of the relative levels of the clock gene Per2 product during the day but did not affect the neuronal activity rhythms. In the hippocampus, the pallid mice presented with anomalies in the cytoarchitecture of the Dentate Gyrus granule cells, but not in CA1 pyramidal neurones, along with altered PER2 protein levels as well as reduced pCREB/tCREB ratio during the day. Our findings suggest that lack of BLOC-1 in mice disrupts the sleep/wake cycle and performance in behavioural tests associated with specific alterations in cytoarchitecture and protein expression

    Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia

    Get PDF
    Leukemia stem cells (LSCs) in individuals with chronic myelogenous leukemia (CML) (hereafter referred to as CML LSCs) are responsible for initiating and maintaining clonal hematopoiesis. These cells persist in the bone marrow (BM) despite effective inhibition of BCR–ABL kinase activity by tyrosine kinase inhibitors (TKIs). Here we show that although the microRNA (miRNA) miR-126 supported the quiescence, self-renewal and engraftment capacity of CML LSCs, miR-126 levels were lower in CML LSCs than in long-term hematopoietic stem cells (LT-HSCs) from healthy individuals. Downregulation of miR-126 levels in CML LSCs was due to phosphorylation of Sprouty-related EVH1-domain-containing 1 (SPRED1) by BCR–ABL, which led to inhibition of the RAN–exportin-5–RCC1 complex that mediates miRNA maturation. Endothelial cells (ECs) in the BM supply miR-126 to CML LSCs to support quiescence and leukemia growth, as shown using mouse models of CML in which Mir126a (encoding miR-126) was conditionally knocked out in ECs and/or LSCs. Inhibition of BCR–ABL by TKI treatment caused an undesired increase in endogenous miR-126 levels, which enhanced LSC quiescence and persistence. Mir126a knockout in LSCs and/or ECs, or treatment with a miR-126 inhibitor that targets miR-126 expression in both LSCs and ECs, enhanced the in vivo anti-leukemic effects of TKI treatment and strongly diminished LSC leukemia-initiating capacity, providing a new strategy for the elimination of LSCs in individuals with CML

    Meta-Analysis of the Alzheimer\u27s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models.

    Get PDF
    We present a consensus atlas of the human brain transcriptome in Alzheimer\u27s disease (AD), based on meta-analysis of differential gene expression in 2,114 postmortem samples. We discover 30 brain coexpression modules from seven regions as the major source of AD transcriptional perturbations. We next examine overlap with 251 brain differentially expressed gene sets from mouse models of AD and other neurodegenerative disorders. Human-mouse overlaps highlight responses to amyloid versus tau pathology and reveal age- and sex-dependent expression signatures for disease progression. Human coexpression modules enriched for neuronal and/or microglial genes broadly overlap with mouse models of AD, Huntington\u27s disease, amyotrophic lateral sclerosis, and aging. Other human coexpression modules, including those implicated in proteostasis, are not activated in AD models but rather following other, unexpected genetic manipulations. Our results comprise a cross-species resource, highlighting transcriptional networks altered by human brain pathophysiology and identifying correspondences with mouse models for AD preclinical studies
    • …
    corecore