14,372 research outputs found
Co-benefits and trade-offs of environmental pressures: A case study of Zhejiang’s socio-economic evolution
Our societies are continuously grappling with how to achieve rapid economic growth while minimizing the challenges of environmental sustainability. In this avenue, numerous studies have contributed towards investigating socio-economic factors and developing policies targeting environmental pressures (EPs). While previous studies have tended to focus on the individual driving forces of EPs, the consideration of the co-benefits and trade-offs among different EPs and policies have been considerably overlooked. In China, previous studies have mostly engaged these issues at the national level and have overlooked the regional socio-economic characteristics – this presents a mismatch between regional policy applications and average national level research findings. Towards this end, this study examines the co-benefits and trade-offs of eight EPs in Zhejiang during the 2007–2015 period. Our findings revealed strict co-benefits in reductions of all eight EPs due to intensity changes as well as trade-offs due to changes in final demand structure and final demand composition. Sectoral results show that only the Non-Ferrous Metal Ores sector has strict co-benefits among all EPs from the production perspective, while eight sectors have strict co-benefits from the consumption perspective mainly including the Mining and Washing of Coal, Ferrous Metal Ores, Electric Power and Heat Power sectors. Our findings suggest important policy implications associated with utilizing co-benefits and avoiding trade-offs for EP mitigation: making full use of all driving forces, strengthening intersectoral coordination, and establishing a joint evaluation mechanism among different sectors
Comparative WGBS Identifies Genes that Influence Non-ripe Phenotype in Tomato Epimutant Colourless Non-ripening
Whole-genome bisulfite sequencing (WGBS) allows single-base resolution and genome-wide profiling of DNA methylation in plants and animals. This technology provides a powerful tool to identify genes that are potentially controlled by dynamic changes of DNA methylation and demethylation. However, naturally occurring epimutants are rare and genes under epigenetic regulation as well as their biological relevances are often difficult to define. In tomato, fruit development and ripening are a complex process that involves epigenetic control. We have taken the advantage of the tomato epimutant Colourless non-ripening (Cnr) and performed comparative mining of the WGBS datasets for the Cnr and SlCMT3-silenced Cnr fruits. We compared DNA methylation profiles for the promoter sequences of approximately 5,000 bp immediately upstream of the coding region of a list of 20 genes. Differentially methylated regions were found for some of these genes. Virus-induced gene silencing (VIGS) of differentially methylated gene SlDET1 or SlPDS resulted in unusual brown pigmentation in Cnr fruits. These results suggest that comparative WGBS coupled with VIGS can be used to identify genes that may contribute to the colourless unripe phenotype of fruit in the Cnr epimutant. © 2017 Science China Press and Springer-Verlag GmbH Germany, part of Springer Natur
Epidemiologic Features and Environmental Risk Factors of Severe Fever with Thrombocytopenia Syndrome, Xinyang, China
Background:Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease discovered in rural areas of Central China in 2009, caused by a novel bunyavirus, SFT
Janus monolayers of transition metal dichalcogenides.
Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements
Graphene-based modulation-doped superlattice structures
The electronic transport properties of graphene-based superlattice structures
are investigated. A graphene-based modulation-doped superlattice structure
geometry is proposed and consist of periodically arranged alternate layers:
InAs/graphene/GaAs/graphene/GaSb. Undoped graphene/GaAs/graphene structure
displays relatively high conductance and enhanced mobilities at elevated
temperatures unlike modulation-doped superlattice structure more steady and
less sensitive to temperature and robust electrical tunable control on the
screening length scale. Thermionic current density exhibits enhanced behaviour
due to presence of metallic (graphene) mono-layers in superlattice structure.
The proposed superlattice structure might become of great use for new types of
wide-band energy gap quantum devices.Comment: 5 figure
Measurements of the Cross Section for e+e- -> hadrons at Center-of-Mass Energies from 2 to 5 GeV
We report values of for 85 center-of-mass energies between
2 and 5 GeV measured with the upgraded Beijing Spectrometer at the Beijing
Electron-Positron Collider.Comment: 5 pages, 3 figure
Electrochemical integration of graphene with light absorbing copper-based thin films
We present an electrochemical route for the integration of graphene with
light sensitive copper-based alloys used in optoelectronic applications.
Graphene grown using chemical vapor deposition (CVD) transferred to glass is
found to be a robust substrate on which photoconductive Cu_{x}S films of 1-2 um
thickness can be deposited. The effect of growth parameters on the morphology
and photoconductivity of Cu_{x}S films is presented. Current-voltage
characterization and photoconductivity decay experiments are performed with
graphene as one contact and silver epoxy as the other
First Measurement of the Branching Fraction of the Decay psi(2S) --> tau tau
The branching fraction of the psi(2S) decay into tau pair has been measured
for the first time using the BES detector at the Beijing Electron-Positron
Collider. The result is ,
where the first error is statistical and the second is systematic. This value,
along with those for the branching fractions into e+e- and mu+mu of this
resonance, satisfy well the relation predicted by the sequential lepton
hypothesis. Combining all these values with the leptonic width of the resonance
the total width of the psi(2S) is determined to be keV.Comment: 9 pages, 2 figure
- …