56 research outputs found

    Urban Planning as an Extension of War Planning:

    Full text link
    War-city relationships had long been studied by scholars regarding wars\u27 sudden impact on cities. Studies typically focused on one specific event\u27s impact on urban military, politics, economy, or society. This approach, however, treated war\u27s impact on cities as only temporary, hindered opportunities to reveal multiple political regimes\u27 spatial competition through war-oriented city planning and construction, which is crucial for city development, and their resultant urban form changes through time. In response, this study has examined city planning and construction activities during the short time gaps between multiple military conflicts, with various military objectives, and conducted by different political regimes in Shenyang, China. In accordance with archival research, a space syntax axis analysis has been used to quantify spatial dynamics throughout war-peace-war cycles to explore the impact of military-oriented planning on city-scaled development. We have found these planning strategies, initiated by specific military goals, acted as extensions of war planning, segregating the city and causing urban fragmentation. They also acted as a driving factor which promoted modernization of the city in the early 20th century. We conclude that wars oriented planning can alter a city\u27s development track and impact its structure and form through the creation of internally connected but isolated urban districts

    Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2

    Full text link
    Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed matter physics counterpart of relativisticWeyl fermion [13] originally introduced in high energy physics. The Weyl semimetal realized in the TaAs class features multiple Fermi arcs arising from topological surface states [10, 11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20]. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion [21], which does not have counterpart in high energy physics due to the breaking of Lorentz invariance, can emerge as topologically-protected touching between electron and hole pockets. Here, we report direct spectroscopic evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 [22-24]. The topological surface states are confirmed by directly observing the surface states using bulk-and surface-sensitive angle-resolved photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI) pattern between the two putative Fermi arcs in scanning tunneling microscopy (STM). Our work establishes MoTe2 as the first experimental realization of type-II Weyl semimetal, and opens up new opportunities for probing novel phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.Comment: submitted on 01/29/2016. Nature Physics, in press. Spectroscopic evidence of the Fermi arcs from two complementary surface sensitive probes - ARPES and STS. A comparison of the calculated band structure for T_d and 1T' phase to identify the topological Fermi arcs in the T_d phase is also included in the supplementary informatio

    Discussion on the thermal conductivity enhancement of nanofluids

    Get PDF
    Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed

    Multi-Hop Cooperative Caching in Social IoT Using Matching Theory

    No full text
    corecore