340 research outputs found

    TiG-BEV: Multi-view BEV 3D Object Detection via Target Inner-Geometry Learning

    Full text link
    To achieve accurate and low-cost 3D object detection, existing methods propose to benefit camera-based multi-view detectors with spatial cues provided by the LiDAR modality, e.g., dense depth supervision and bird-eye-view (BEV) feature distillation. However, they directly conduct point-to-point mimicking from LiDAR to camera, which neglects the inner-geometry of foreground targets and suffers from the modal gap between 2D-3D features. In this paper, we propose the learning scheme of Target Inner-Geometry from the LiDAR modality into camera-based BEV detectors for both dense depth and BEV features, termed as TiG-BEV. First, we introduce an inner-depth supervision module to learn the low-level relative depth relations between different foreground pixels. This enables the camera-based detector to better understand the object-wise spatial structures. Second, we design an inner-feature BEV distillation module to imitate the high-level semantics of different keypoints within foreground targets. To further alleviate the BEV feature gap between two modalities, we adopt both inter-channel and inter-keypoint distillation for feature-similarity modeling. With our target inner-geometry distillation, TiG-BEV can effectively boost BEVDepth by +2.3% NDS and +2.4% mAP, along with BEVDet by +9.1% NDS and +10.3% mAP on nuScenes val set. Code will be available at https://github.com/ADLab3Ds/TiG-BEV.Comment: Code link: https://github.com/ADLab3Ds/TiG-BE

    Targeting Neuroglial Sodium Channels in Neuroinflammatory Diseases

    Get PDF
    The Hodgkin-Huxley model, at its 66th anniversary, remains a footing stone of neuroscience, which describes how the action potential (AP) is generated. As the core player of AP initiation, voltage-gated sodium channels (VGSCs) are always considered to be required for electrogenesis in excitable cells. Cells which are not traditionally been considered to be excitable, including glial cells, also express VGSCs in physiological as well as pathological conditions. The dysfunction of glial VGSCs is seemingly not related to abnormal excitation of neurons, but of importance in the astrogliosis and M1 polarization of microglia, which could induce refractory neuroinflammatory diseases, such as multiple sclerosis, stroke, epilepsy, and Alzheimer’s and Parkinson’s diseases. Therefore, in this chapter, we aim to describe the physiological and pathological roles of VGSCs contributing to the activity of glial cells and discuss whether VGSC subtypes could be used as a novel drug target, with an eye toward therapeutic implications for neuroinflammatory diseases

    Some novel results for DNNs via relaxed Lyapunov functionals

    Get PDF
    The focus of this paper was to explore the stability issues associated with delayed neural networks (DNNs). We introduced a novel approach that departs from the existing methods of using quadratic functions to determine the negative definite of the Lyapunov-Krasovskii functional's (LKFs) derivative V˙(t) \dot{V}(t) . Instead, we proposed a new method that utilizes the conditions of positive definite quadratic function to establish the positive definiteness of LKFs. Based on this approach, we constructed a novel the relaxed LKF that contains delay information. In addition, some combinations of inequalities were extended and used to reduce the conservatism of the results obtained. The criteria for achieving delay-dependent asymptotic stability were subsequently presented in the framework of linear matrix inequalities (LMIs). Finally, a numerical example confirmed the effectiveness of the theoretical result

    Single-cell transcriptome profiling highlights the role of APP in blood vessels in assessing the risk of patients with proliferative diabetic retinopathy developing Alzheimer’s disease

    Get PDF
    Introduction: The incidence of diabetic retinopathy (DR) has been found to be associated with the risk of developing Alzheimer‘s disease (AD). In addition to the common properties of neurodegeneration, their progressions are involved with abnormal vascular functions. However, the interactions between them have not been fully understood. This study aimed to investigate the key factor for the underlying interactions and shared signaling pathways in the vasculature of DR and AD.Methods: We retrieved single-cell RNA sequencing (scRNA-seq) data regarding human fibrovascular membrane (FVM) of proliferative diabetic retinopathy (PDR) and human hippocampus vessels of AD from the NCBI-GEO database. GSEA analysis was performed to analyze AD-related genes in endothelial cells and pericytes of PDR. CellChat was used for predicting cell-cell communication and the signaling pathway.Results: The data suggested that amyloid-beta precursor protein (APP) signaling was found crucial in the vasculature of PDR and AD. Endothelial cells and pericytes could pose influences on other cells mainly via APP signaling in PDR. The endothelial cells were mainly coordinated with macrophages in the hippocampus vasculature of AD via APP signaling. The bulk RNA-seq in mice with PDR validated that the expression of APP gene had a significant correlation with that of the AD genome-wide association studies (GWAS) gene.Discussion: Our study demonstrates that the vasculopathy of PDR and AD is likely to share a common signaling pathway, of which the APP-related pathway is a potential target

    Scorpion Toxins from <em>Buthus martensii</em> Karsch (BmK) as Potential Therapeutic Agents for Neurological Disorders: State of the Art and Beyond

    Get PDF
    Scorpions are fascinating creatures which became residents of the planet well before human beings dwelled on Earth. Scorpions are always considered as a figure of fear, causing notable pain or mortality throughout the world. Their venoms are cocktails of bioactive molecules, called toxins, which are responsible for their toxicity. Fortunately, medical researchers have turned the life-threatening toxins into life-saving therapeutics. From Song Dynasty in ancient China, scorpions and their venoms have been applied in traditional medicine for treating neurological disorders, such as pain, stroke, and epilepsy. Neurotoxins purified from Chinese scorpion Buthus Martensii Karsch (BmK) are considered as the main active ingredients, which act on membrane ion channels. Long-chain toxins of BmK, composed of 58–76 amino acids, could specifically recognize voltage-gated sodium channels (VGSCs). Short-chain BmK toxins, containing 28–40 amino acids, are found to modulate the potassium or chloride channels. These components draw attention as useful scaffolds for drug-design in order to tackle the emerging global medical threats. In this chapter, we aim to summarize the most promising candidates that have been isolated from BmK venoms for drug development

    Effects of coastal saline-alkali soil on rhizosphere microbial community and crop yield of cotton at different growth stages

    Get PDF
    Soil salinization is a global constraint that significantly hampers agricultural production, with cotton being an important cash crop that is not immune to its detrimental effects. The rhizosphere microbiome plays a critical role in plant health and growth, which assists plants in resisting adverse abiotic stresses including soil salinization. This study explores the impact of soil salinization on cotton, including its effects on growth, yield, soil physical and chemical properties, as well as soil bacterial community structures. The results of β-diversity analysis showed that there were significant differences in bacterial communities in saline-alkali soil at different growth stages of cotton. Besides, the more severity of soil salinization, the more abundance of Proteobacteria, Bacteroidota enriched in rhizosphere bacterial composition where the abundance of Acidobacteriota exhibited the opposite trend. And the co-occurrence network analysis showed that soil salinization affected the complexity of soil bacterial co-occurrence network. These findings provide valuable insights into the mechanisms by which soil salinization affects soil microorganisms in cotton rhizosphere soil and offer guidance for improving soil salinization using beneficial microorganisms
    corecore