24 research outputs found

    NRPA: Neural Recommendation with Personalized Attention

    Full text link
    Existing review-based recommendation methods usually use the same model to learn the representations of all users/items from reviews posted by users towards items. However, different users have different preference and different items have different characteristics. Thus, the same word or similar reviews may have different informativeness for different users and items. In this paper we propose a neural recommendation approach with personalized attention to learn personalized representations of users and items from reviews. We use a review encoder to learn representations of reviews from words, and a user/item encoder to learn representations of users or items from reviews. We propose a personalized attention model, and apply it to both review and user/item encoders to select different important words and reviews for different users/items. Experiments on five datasets validate our approach can effectively improve the performance of neural recommendation.Comment: 4 pages, 4 figure

    Wound Segmentation with Dynamic Illumination Correction and Dual-view Semantic Fusion

    Full text link
    Wound image segmentation is a critical component for the clinical diagnosis and in-time treatment of wounds. Recently, deep learning has become the mainstream methodology for wound image segmentation. However, the pre-processing of the wound image, such as the illumination correction, is required before the training phase as the performance can be greatly improved. The correction procedure and the training of deep models are independent of each other, which leads to sub-optimal segmentation performance as the fixed illumination correction may not be suitable for all images. To address aforementioned issues, an end-to-end dual-view segmentation approach was proposed in this paper, by incorporating a learn-able illumination correction module into the deep segmentation models. The parameters of the module can be learned and updated during the training stage automatically, while the dual-view fusion can fully employ the features from both the raw images and the enhanced ones. To demonstrate the effectiveness and robustness of the proposed framework, the extensive experiments are conducted on the benchmark datasets. The encouraging results suggest that our framework can significantly improve the segmentation performance, compared to the state-of-the-art methods

    PrivateRec: Differentially Private Training and Serving for Federated News Recommendation

    Full text link
    Privacy protection is an essential issue in personalized news recommendation, and federated learning can potentially mitigate the privacy concern by training personalized news recommendation models over decentralized user data.For a theoretical privacy guarantee, differential privacy is necessary. However, applying differential privacy to federated recommendation training and serving conventionally suffers from the unsatisfactory trade-off between privacy and utility due to the high-dimensional characteristics of model gradients and hidden representations. In addition, there is no formal privacy guarantee for both training and serving in federated recommendation. In this paper, we propose a unified federated news recommendation method for effective and privacy-preserving model training and online serving with differential privacy guarantees. We first clarify the notion of differential privacy over users' behavior data for both model training and online serving in the federated recommendation scenario. Next, we propose a privacy-preserving online serving mechanism under this definition with differentially private user interest decomposition. More specifically, it decomposes the high-dimensional and privacy-sensitive user embedding into a combination of public basic vectors and adds noise to the combination coefficients. In this way, it can avoid the dimension curse and improve the utility by reducing the required noise intensity for differential privacy. Besides, we design a federated recommendation model training method with differential privacy, which can avoid the dimension-dependent noise for large models via label permutation and differentially private attention modules. Experiments on real-world news recommendation datasets validate the effectiveness of our method in achieving a good trade-off between privacy protection and utility for federated news recommendations

    SMART APPLIANCE SYSTEM

    Get PDF
    The invention describes a smart appliance system. The system receives instructions from a user over a network to control an appliance. The system then transmits these instructions to the appliance to control the appliance. The system causes the appliance to operate according to the transmitted instructions

    A Modularity Degree Based Heuristic Community Detection Algorithm

    No full text
    A community in a complex network can be seen as a subgroup of nodes that are densely connected. Discovery of community structures is a basic problem of research and can be used in various areas, such as biology, computer science, and sociology. Existing community detection methods usually try to expand or collapse the nodes partitions in order to optimize a given quality function. These optimization function based methods share the same drawback of inefficiency. Here we propose a heuristic algorithm (MDBH algorithm) based on network structure which employs modularity degree as a measure function. Experiments on both synthetic benchmarks and real-world networks show that our algorithm gives competitive accuracy with previous modularity optimization methods, even though it has less computational complexity. Furthermore, due to the use of modularity degree, our algorithm naturally improves the resolution limit in community detection

    Protecting Intellectual Property of Language Generation APIs with Lexical Watermark

    No full text
    Nowadays, due to the breakthrough in natural language generation (NLG), including machine translation, document summarization, image captioning, etc NLG models have been encapsulated in cloud APIs to serve over half a billion people worldwide and process over one hundred billion word generations per day. Thus, NLG APIs have already become essential profitable services in many commercial companies. Due to the substantial financial and intellectual investments, service providers adopt a pay-as-you-use policy to promote sustainable market growth. However, recent works have shown that cloud platforms suffer from financial losses imposed by model extraction attacks, which aim to imitate the functionality and utility of the victim services, thus violating the intellectual property (IP) of cloud APIs. This work targets at protecting IP of NLG APIs by identifying the attackers who have utilized watermarked responses from the victim NLG APIs. However, most existing watermarking techniques are not directly amenable for IP protection of NLG APIs. To bridge this gap, we first present a novel watermarking method for text generation APIs by conducting lexical modification to the original outputs. Compared with the competitive baselines, our watermark approach achieves better identifiable performance in terms of p-value, with fewer semantic losses. In addition, our watermarks are more understandable and intuitive to humans than the baselines. Finally, the empirical studies show our approach is also applicable to queries from different domains, and is effective on the attacker trained on a mixture of the corpus which includes less than 10% watermarked samples
    corecore