32 research outputs found

    Biomass-derived carbon material as efficient electrocatalysts for the oxygen reduction reaction

    Get PDF
    Despite the abundance of carbon in nature, a significant portion of the existing biomass carbon materials in livestock, agriculture, and marine fishery industry are currently being wasted. Utilizing sustainable carbon materials as an alternative to noble Pt-based catalysts is crucial step to convert widely available and low-cost biomass resources into clean energy systems. Therefore, the rational synthesis of carbon-based catalysts for oxygen reduction reaction (ORR) has become a hot research focus in the field of electrochemistry. In this study, the recent progress in the synthesis of ORR electrocatalysts using sustainable biomass resources was reviewed; the activation and synthesis strategies of various biomass resources, as well as the microstructure and oxygen reduction performance of the prepared carbon-based catalysts were investigated. It is hoped that this review article will promote the understanding of various parameters from biomass as precursors for catalyst preparation and make contribute to the transition of biomass resources from the wasted carbon materials to the main catalysts in future energy devices.</p

    One Possible Mechanism of Pulsed Dye Laser Treatment on Infantile Hemangioma: Induction of Endothelial Apoptosis and Serum vascular endothelial growth factor (VEGF) Level Changes

    Get PDF
    Introduction: Pulsed dye laser (PDL) is an important treatment for superficial infantile hemangioma, but few studies report on its cellular mechanism. The aim of this study was to evaluate alterations of serum vascular endothelial growth factor (VEGF) level in infantile hemangioma (IH) patients after laser treatment and effects of PDL irradiation on human umbilical vein endothelial cells (HUVECs) in vitro, as well as to explore the biomolecular mechanisms and ultrastructure changes of the PDL effect.Methods: 74 children with infant hemangioma including 45 patients in proliferating phase, 18 patients in involuting phase, 11 patients in involuted phase and 10 healthy children were engaged in this study. The plasma VEGF levels of children were measured with the enzyme-linked immunosorbent assay (ELISA). 24 hours after, HUVECs cultured in vitro were irradiated with PDL, cell apoptosis, mRNA levels of VEGF, and changes of ultrastructure were evaluated using flow cytometry, real-time reverse transcriptase polymerase chain reaction (RT-PCR), and transmission electron microscopy, respectively.Results: The serum VEGF concentrations in children with proliferating hemangiomas were significantly higher than in patients with involuting / involved hemangiomas and healthy patients. After receiving 3 laser treatments, the plasma VEGF levels of IH patients in proliferating hemangiomas decreased significantly. PDL irradiation could down-regulate VEGF mRNA expression of HUVECs, and increase cell apoptosis rate. Conclusion: The present study demonstrates that PDL irradiation imparts apoptosis induction effects on HUVECs in vitro. Furthermore, our results suggest that vascular endothelial growth factor may be of particular importance in pathophysiology and PDL treatment of hemangiomas, also serum VEGF levels may be used as an aid in the follow up of IH. This provides valuable evidence of the PDL effect on infantile hemangioma

    Diabetic retinopathy risk in patients with unhealthy lifestyle: A Mendelian randomization study

    Get PDF
    PurposeThis study aimed to investigate the causal association between unhealthy lifestyle factors and diabetic retinopathy (DR) risk and to determine better interventions targeting these modifiable unhealthy factors.DesignTwo-sample Mendelian randomization (MR) analysis was performed in this study. The inverse variance-weighted method was used as the primary method.MethodOur study included 687 single-nucleotide polymorphisms associated with unhealthy lifestyle factors as instrumental variables. Aggregated data on individual-level genetic information were obtained from the corresponding studies and consortia. A total of 292,622,3 cases and 739,241,18 variants from four large consortia (MRC Integrative Epidemiology Unit [MRC-IEU], Genetic Investigation of Anthropometric Traits [GIANT], GWAS &amp; Sequencing Consortium of Alcohol and Nicotine Use [GSCAN], and Neale Lab) were included.ResultIn the MR analysis, a higher body mass index (BMI) (odds ratio [OR], 95% confidence interval [CI] = 1.42, 1.30–1.54; P &lt; 0.001] and cigarettes per day (OR, 95% CI = 1.16, 1.05–1.28; P = 0.003) were genetically predicted to be causally associated with an increased risk of DR, while patients with higher hip circumference (HC) had a lower risk of DR (OR, 95% CI = 0.85, 0.76–0.95; P = 0.004). In the analysis of subtypes of DR, the results of BMI and HC were similar to those of DR, whereas cigarettes per day were only related to proliferative DR (PDR) (OR, 95% CI = 1.18, 1.04–1.33; P = 0.009). In the MR-PRESSO analysis, a higher waist-to-hip ratio (WHR) was a risk factor for DR and PDR (OR, 95% CI = 1.24, 1.02–1.50, P = 0.041; OR, 95% CI = 1.32, 1.01–1.73, P = 0.049) after removing the outliers. Furthermore, no pleiotropy was observed in these exposures.ConclusionOur findings suggest that higher BMI, WHR, and smoking are likely to be causal factors in the development of DR, whereas genetically higher HC is associated with a lower risk of DR, providing insights into a better understanding of the etiology and prevention of DR

    Modification of hydrophobic polypeptide-based film by blending with hydrophilic poly(acrylic acid)

    No full text
    In this study, a series of poly(&#947;-benzyl L-glutamate)/poly(acrylic acid) (PBLG/PAA) polymer blend films were prepared by casting the polymer blend solution in dimethylsulfoxide (DMSO). The structure and morphology of the polymer blend film were investigated by Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Thermal, mechanical, and chemical properties of PBLG/PAA polymer blend films were studied by Differential Scanning Calorimetry (DSC), Thermogravimetric (TG) Analysis, Tensile Tests, and measurements of Surface Contact Angles. The results revealed that the introduction of PAA could exert great effects on the structure and properties of the polypeptide films

    Capture Power Prediction of the Frustum of a Cone Shaped Floating Body Based on BP Neural Network

    No full text
    How to improve the power generation of wave energy converters (WEC) has become one of the main research objectives in wave energy field. This paper illustrates a framework on the use of back propagation (BP) neural network in predicting capture power of the frustum of a cone shaped floating body. Mathematical model of single floating body is derived, and radius, semi-vertical angle, mass, submergence depth, power take-off (PTO) damping coefficient, and stiffness coefficient are identified as key variables. Commercial software ANSYS-AQWA is used for numerical simulations to obtain hydrodynamic parameters, and then capture power is calculated by these parameters. A database containing 100 samples is established by Latin hypercube sampling (LHS) method, and a simple feature study is conducted. A BP neural network model with high accuracy is designed and trained for predictions based on built database. The results show that forecasting results and desired outputs are in great agreement with error percentage not greater than 4%, correlation coefficient (CC) greater than 0.9, P value close to 1, and root mean square error (RMSE) less than 139 W. The proposed method provides a guideline for designers to identify basic parameters of the floating body and system damping coefficient

    Physicochemical properties of poly(lactic acid-co-glycolic acid) film modified via blending with poly(butyl acrylate-co-methyl methacrylate)

    No full text
    A series of poly(lactic acid-co-glycolic acid) (PLGA)/poly(butyl acrylate-co-methyl methacrylate) (P(BA-co-MMA)) blend films with different P(BA-co-MMA) mole contents were prepared by casting the polymer blend solution in chloroform. Surface morphologies of the PLGAP(BA-co-MMA) blend films were studied by scanning electron microscopy (SEM). Thermal, mechanical, and chemical properties of PLGAP(BA-co-MMA) blend films were investigated by differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), tensile tests, and surface contact angle tests. The introduction of P(BA-co-MMA) could modify the properties of PLGA films
    corecore