2,316 research outputs found

    Flux Jumping and a Bulk-to-Granular Transition in the Magnetization of a Compacted and Sintered MgB2 Superconductor

    Full text link
    The recent discovery of intermediate-temperature superconductivity (ITC) in MgB2 by Akimitsu et al. and its almost simultaneous explanation in terms of a hole-carrier-based pairing mechanism by Hirsch, has triggered an avalanche of studies of its structural, magnetic and transport properties. As a further contribution to the field we report the results of field (H) and temperature (T) dependent magnetization (M) measurements of a pellet of uniform, large-grain sintered MgB2. We show that at low temperatures the size of the pellet and its critical current density, Jc(H) - i.e. its M(H) - ensure low field flux jumping, which of course ceases when M(H) drops below a critical value. With further increase of H and T the individual grains decouple and the M(H) loops drop to lower lying branches, unresolved in the usual full M(H) representation. After taking into account the sample size and grain size, respectively, the bulk sample and the grains were deduced to exhibit the same magnetically determined Jc s (e.g. 105 A/cm2, 20 K, 0T) and hence that for each temperature of measurement Jc(H) decreased monotonically with H over the entire field range, except for a gap within the grain-decoupling zone.Comment: 7 pages, 6 figures, Changes: Fig 6 Vertical scale an order of magnitude out (changed figure and associated text). Also corrected typo in last sectio

    Gravitational Collapse of Phantom Fluid in (2+1)-Dimensions

    Full text link
    This investigation is devoted to the solutions of Einstein's field equations for a circularly symmetric anisotropic fluid, with kinematic self-similarity of the first kind, in (2+1)(2+1)-dimensional spacetimes. In the case where the radial pressure vanishes, we show that there exists a solution of the equations that represents the gravitational collapse of an anisotropic fluid, and this collapse will eventually form a black hole, even when it is constituted by the phantom energy.Comment: 10 page

    Separation of Circulating Tokens

    Full text link
    Self-stabilizing distributed control is often modeled by token abstractions. A system with a single token may implement mutual exclusion; a system with multiple tokens may ensure that immediate neighbors do not simultaneously enjoy a privilege. For a cyber-physical system, tokens may represent physical objects whose movement is controlled. The problem studied in this paper is to ensure that a synchronous system with m circulating tokens has at least d distance between tokens. This problem is first considered in a ring where d is given whilst m and the ring size n are unknown. The protocol solving this problem can be uniform, with all processes running the same program, or it can be non-uniform, with some processes acting only as token relays. The protocol for this first problem is simple, and can be expressed with Petri net formalism. A second problem is to maximize d when m is given, and n is unknown. For the second problem, the paper presents a non-uniform protocol with a single corrective process.Comment: 22 pages, 7 figures, epsf and pstricks in LaTe

    Numerical simulation of the massive scalar field evolution in the Reissner-Nordstr\"{o}m black hole background

    Full text link
    We studied the massive scalar wave propagation in the background of Reissner-Nordstr\"{o}m black hole by using numerical simulations. We learned that the value MmMm plays an important role in determining the properties of the relaxation of the perturbation. For Mm<<1Mm << 1 the relaxation process depends only on the field parameter and does not depend on the spacetime parameters. For Mm>>1Mm >> 1, the dependence of the relaxation on the black hole parameters appears. The bigger mass of the black hole, the faster the perturbation decays. The difference of the relaxation process caused by the black hole charge QQ has also been exhibited.Comment: Accepted for publication in Phys. Rev.

    The Sorption of Sulfamethoxazole by Aliphatic and Aromatic Carbons from Lignocellulose Pyrolysis

    Get PDF
    Massive biomass waste with lignocellulose components can be used to produce biochar for environmental remediation. However, the impact of lignocellulose pyrolysis on biochar structure in relation to the sorption mechanism of ionizable antibiotics is still poorly understood. In this paper, diverse techniques including thermogravimetric analysis and 13C nuclear magnetic resonance were applied to investigate the properties of biochars as affected by the pyrolysis of cellulose and lignin in feedstock. Cellulose-derived biochars possessed more abundant groups than lignin-derived biochars, suggesting the greater preservation of group for cellulose during the carbonization. Higher sorption of sulfamethoxazole (SMX) was also observed by cellulose-derived biochars owing to hydrogen bond interaction. Sorption affinity gradually declined with the conversion aliphatic to aromatic carbon, whereas the enhanced specific surface area (SSA) subsequently promoted SMX sorption as evidenced by increased SSA-N2 and SSA-CO2 from 350 to 450 °C. The decreased Kd/SSA-N2 values with increasing pH values implied a distinct reduction in sorption per unit area, which could be attributed to enhanced electrostatic repulsion. This work elucidated the role of carbon phases from thermal conversion of lignocellulose on the sorption performance for sulfonamide antibiotics, which will be helpful to the structural design of carbonaceous adsorbents for the removal of ionizable antibiotics

    Globular clusters versus dark matter haloes in strong lensing observations

    Get PDF
    Small distortions in the images of Einstein rings or giant arcs offer the exciting prospect of detecting low mass dark matter haloes or subhaloes of mass below 109 M⊙ (for independent haloes, the mass refers to M200, and for subhaloes, the mass refers to the mass within tidal radius), most of which are too small to have made a visible galaxy. A very large number of such haloes are predicted to exist in the cold dark matter model of cosmogony; in contrast, other models, such as warm dark matter, predict no haloes below a mass of this order, which depends on the properties of the warm dark matter particle. Attempting to detect these small perturbers could therefore discriminate between different kinds of dark matter particles, and even rule out the cold dark matter model altogether. Globular clusters in the lens galaxy also induce distortions in the image, which could, in principle, contaminate the test. Here, we investigate the population of globular clusters in six early-type galaxies in the Virgo cluster. We find that the number density of globular clusters of mass MGC ∼ 106 M⊙ is comparable to that of the dark matter perturbers (subhaloes in the lenses and haloes along the line of sight of comparable mass). We show that the very different degrees of mass concentration in globular clusters and dark matter haloes result in different lensing distortions. These are detectable with milli-arcsecond resolution imaging, which can distinguish between globular cluster and dark matter halo signals

    Impurity and interface bound states in dx2−y2+idxyd_{x^2-y^2}+id_{xy} and px+ipyp_x+ip_y superconductors

    Get PDF
    Motivated by recent discoveries of novel superconductors such as Nax_xCoO2⋅y_2\cdot yH2_2O and Sr2_2RuO4_4, we analysize features of quasi-particle scattering due to impurities and interfaces for possible gapful dx2−y2+idxyd_{x^2-y^2}+id_{xy} and px+ipyp_x+ip_y Cooper pairing. A bound state appears near a local impurity, and a band of bound states form near an interface. We obtained analytically the bound state energy, and calculated the space and energy dependent local density of states resolvable by high-resolution scanning tunnelling microscopy. For comparison we also sketch results of impurity and surface states if the pairing is nodal p- or d-wave.Comment: 4 pages, 4 figure

    The Energy-dependent Checkerboard Patterns in Cuprate Superconductors

    Full text link
    Motivated by the recent scanning tunneling microscopy (STM) experiments [J. E. Hoffman {\it et al.}, Science {\bf 297}, 1148 (2002); K. McElroy {\it et al.}, Nature (to be published)], we investigate the real space local density of states (LDOS) induced by weak disorder in a d-wave superconductor. We first present the energy dependent LDOS images around a single weak defect at several energies, and then point out that the experimentally observed checkerboard pattern in the LDOS could be understood as a result of quasiparticle interferences by randomly distributed defects. It is also shown that the checkerboard pattern oriented along 45045^0 to the Cu-O bonds at low energies would transform to that oriented parallel to the Cu-O bonds at higher energies. This result is consistent with the experiments.Comment: 3 pages, 3 figure

    Phase-fluctuation induced reduction of the kinetic energy at the superconducting transition

    Full text link
    Recent reflectivity measurements provide evidence for a "violation" of the in-plane optical integral in the underdoped high-T_c compound Bi_2Sr_2CaCu_2O_{8+\delta} up to frequencies much higher than expected by standard BCS theory. The sum rule violation may be related to a loss of in-plane kinetic energy at the superconducting transition. Here, we show that a model based on phase fluctuations of the superconducting order parameter can account for this change of in-plane kinetic energy at T_c. The change is due to a transition from a phase-incoherent Cooper-pair motion in the pseudogap regime above T_c to a phase-coherent motion at T_c.Comment: 5 pages, 3 eps-figure

    Curvature of the universe and the dark energy potential

    Get PDF
    The flatness of an accelerating universe model (characterized by a dark energy scalar field χ\chi) is mimicked from a curved model that is filled with, apart from the cold dark matter component, a quintessencelike scalar field QQ. In this process, we characterize the original scalar potential V(Q)V(Q) and the mimicked scalar potential V(χ)V(\chi) associated to the scalar fields QQ and χ\chi, respectively. The parameters of the original model are fixed through the mimicked quantities that we relate to the present astronomical data, such that the equation state parameter wχw_{_{\chi}} and the dark energy density parameter Ωχ\Omega_{\chi}.Comment: References 7 and 8 have been corrected: (7) Riess et al. 1998, AJ, 116, 1009 and (8) Perlmutter et al. 1999, ApJ, 517, 56
    • …
    corecore