259,454 research outputs found

    Analysis of the vertex DDρD^*D^* \rho with the light-cone QCD sum rules

    Full text link
    In this article, we analyze the vertex DDρD^*D^*\rho with the light-cone QCD sum rules. The strong coupling constant gDDρg_{D^*D^*\rho} is an important parameter in evaluating the charmonium absorption cross sections in searching for the quark-gluon plasmas. Our numerical value for the gDDρg_{D^*D^*\rho} is consistent with the prediction of the effective SU(4) symmetry and vector meson dominance theory.Comment: 6 pages, 1 figure, revised versio

    Large amplitude drop shape oscillations

    Get PDF
    An experimental study of large amplitude drop shape oscillation was conducted in immiscible liquids systems and with levitated free liquid drops in air. In liquid-liquid systems the results indicate the existence of familiar characteristics of nonlinear phenomena. The resonance frequency of the fundamental quadrupole mode of stationary, low viscosity Silicone oil drops acoustically levitated in water falls to noticeably low values as the amplitude of oscillation is increased. A typical, experimentally determined relative frequency decrease of a 0.5 cubic centimeters drop would be about 10% when the maximum deformed shape is characterized by a major to minor axial ratio of 1.9. On the other hand, no change in the fundamental mode frequency could be detected for 1 mm drops levitated in air. The experimental data for the decay constant of the quadrupole mode of drops immersed in a liquid host indicate a slight increase for larger oscillation amplitudes. A qualitative investigation of the internal fluid flows for such drops revealed the existence of steady internal circulation within drops oscillating in the fundamental and higher modes. The flow field configuration in the outer host liquid is also significantly altered when the drop oscillation amplitude becomes large

    System for monitoring physical characteristics of fluids

    Get PDF
    An apparatus and method are described for measuring physical characteristics of fluid, by placing a drop of the fluid in a batch of a second fluid and passing acoustic waves through the bath. The applied frequency of the acoustic waves is varied, to determine the precise value of a frequency at which the drop undergoes resonant oscillations. The resonant frequency indicates the interfacial tension of the drop in the bath, and the interfacial tension can indicate physical properties of the fluid in the drop

    Observations of Shock Waves in Cloud Cavitation

    Get PDF
    This paper describes an investigation of the dynamics and acoustics of cloud cavitation, the structures which are often formed by the periodic breakup and collapse of a sheet or vortex cavity. This form of cavitation frequently causes severe noise and damage, though the precise mechanism responsible for the enhancement of these adverse effects is not fully understood. In this paper, we investigate the large impulsive surface pressures generated by this type of cavitation and correlate these with the images from high-speed motion pictures. This reveals that several types of propagating structures (shock waves) are formed in a collapsing cloud and dictate the dynamics and acoustics of collapse. One type of shock wave structure is associated with the coherent collapse of a well-defined and separate cloud when it is convected into a region of higher pressure. This type of global structure causes the largest impulsive pressures and radiated noise. But two other types of structure, termed 'crescent-shaped regions' and 'leading-edge structures' occur during the less-coherent collapse of clouds. These local events are smaller and therefore produce less radiated noise but the interior pressure pulse magnitudes are almost as large as those produced by the global events. The ubiquity and severity of these propagating shock wave structures provides a new perspective on the mechanisms reponsible for noise and damage in cavitating flows involving clouds of bubbles. It would appear that shock wave dynamics rather than the collapse dynamics of single bubbles determine the damage and noise in many cavitating flows

    Fluctuation-dissipation theorem for chiral systems in non-equilibrium steady states

    Full text link
    We consider a three-terminal system with a chiral edge channel connecting the source and drain terminals. Charge can tunnel between the chiral edge and a third terminal. The third terminal is maintained at a different temperature and voltage than the source and drain. We prove a general relation for the current noises detected in the drain and third terminal. It has the same structure as an equilibrium fluctuation-dissipation relation with the nonlinear response in place of the linear conductance. The result applies to a general chiral system and can be useful for detecting "upstream" modes on quantum Hall edges.Comment: detailed proo

    Analysis of the X(1576) as a tetraquark state with the QCD sum rules

    Get PDF
    In this letter, we take the point of view that the X(1576) be tetraquark state which consists of a scalar-diquark and an anti-scalar-diquark in relative PP-wave, and calculate its mass in the framework of the QCD sum rules approach. The numerical value of the mass mX=(1.66±0.14)GeVm_X=(1.66\pm 0.14) GeV is consistent with the experimental data, there may be some tetraquark component in the vector meson X(1576).Comment: 6 pages, 1 figure, second version, typos correcte

    Ion beam sputter etching of orthopedic implanted alloy MP35N and resulting effects on fatigue

    Get PDF
    The effects of two types of argon ion sputter etched surface structures on the tensile stress fatigue properties of orthopedic implant alloy MP35N were investigated. One surface structure was a natural texture resulting from direct bombardment by 1 keV argon ions. The other structure was a pattern of square holes milled into the surface by a 1 keV argon ion beam through a Ni screen mask. The etched surfaces were subjected to tensile stress only in fatigue tests designed to simulate the cyclic load conditions experienced by the stems of artificial hip joint implants. Both types of sputter etched surface structures were found to reduce the fatigue strength below that of smooth surface MP35N
    corecore