350 research outputs found

    Human Pose Estimation using Global and Local Normalization

    Full text link
    In this paper, we address the problem of estimating the positions of human joints, i.e., articulated pose estimation. Recent state-of-the-art solutions model two key issues, joint detection and spatial configuration refinement, together using convolutional neural networks. Our work mainly focuses on spatial configuration refinement by reducing variations of human poses statistically, which is motivated by the observation that the scattered distribution of the relative locations of joints e.g., the left wrist is distributed nearly uniformly in a circular area around the left shoulder) makes the learning of convolutional spatial models hard. We present a two-stage normalization scheme, human body normalization and limb normalization, to make the distribution of the relative joint locations compact, resulting in easier learning of convolutional spatial models and more accurate pose estimation. In addition, our empirical results show that incorporating multi-scale supervision and multi-scale fusion into the joint detection network is beneficial. Experiment results demonstrate that our method consistently outperforms state-of-the-art methods on the benchmarks.Comment: ICCV201

    Ground state solutions for a non-local type problem in fractional Orlicz Sobolev spaces

    Full text link
    In this paper, we study the following nonlocal problem in fractional Orlicz Sobolev spaces \begin{eqnarray*} (-\Delta_{\Phi})^{s}u+V(x)a(|u|)u=f(x,u),\quad x\in\mathbb{R}^N, \end{eqnarray*} where (−ΔΦ)s(s∈(0,1))(-\Delta_{\Phi})^{s}(s\in(0, 1)) denotes the non-local and maybe non-homogeneous operator, the so-called fractional Φ\Phi-Laplacian. Without assuming the Ambrosetti-Rabinowitz type and the Nehari type conditions on the nonlinearity, we obtain the existence of ground state solutions for the above problem in periodic case. The proof is based on a variant version of the mountain pass theorem and a Lions' type result for fractional Orlicz Sobolev spaces

    Vector-based Representation is the Key: A Study on Disentanglement and Compositional Generalization

    Full text link
    Recognizing elementary underlying concepts from observations (disentanglement) and generating novel combinations of these concepts (compositional generalization) are fundamental abilities for humans to support rapid knowledge learning and generalize to new tasks, with which the deep learning models struggle. Towards human-like intelligence, various works on disentangled representation learning have been proposed, and recently some studies on compositional generalization have been presented. However, few works study the relationship between disentanglement and compositional generalization, and the observed results are inconsistent. In this paper, we study several typical disentangled representation learning works in terms of both disentanglement and compositional generalization abilities, and we provide an important insight: vector-based representation (using a vector instead of a scalar to represent a concept) is the key to empower both good disentanglement and strong compositional generalization. This insight also resonates the neuroscience research that the brain encodes information in neuron population activity rather than individual neurons. Motivated by this observation, we further propose a method to reform the scalar-based disentanglement works (β\beta-TCVAE and FactorVAE) to be vector-based to increase both capabilities. We investigate the impact of the dimensions of vector-based representation and one important question: whether better disentanglement indicates higher compositional generalization. In summary, our study demonstrates that it is possible to achieve both good concept recognition and novel concept composition, contributing an important step towards human-like intelligence.Comment: Preprin

    Standardized Soil Moisture Index for Drought Monitoring Based on SMAP Observations and 36 Years of NLDAS Data: A Case Study in the Southeast United States

    Get PDF
    Droughts can severely reduce the productivity of agricultural lands and forests. The United States Department of Agriculture (USDA) Southeast Regional Climate Hub (SERCH) has launched the Lately Identified Geospecific Heightened Threat System (LIGHTS) to inform its users of potential water deficiency threats. The system identifies droughts and other climate anomalies such as extreme precipitation and heat stress. However, the LIGHTS model lacks input from soil moisture observations. This research aims to develop a simple and easy-to-interpret soil moisture and drought warning index - Standardized Soil Moisture Index (SSI) - by fusing the space-borne Soil Moisture Active Passive (SMAP) soil moisture data with the NLDAS climate index. Ground truth soil moisture data from the Soil Climate Analysis Network (SCAN) were collected for validation. As a result, the accuracy of using SMAP to monitor soil moisture content generally displayed a good statistical correlation with the SCAN data. The validation through the Palmer Drought Severity Index (PDSI) and Normalized Difference Water Index (NDWI) suggested that SSI was effective and sensitive for short-term drought monitoring across large areas

    Mapping QTL Associated with Photoperiod Sensitivity and Assessing the Importance of QTL×Environment Interaction for Flowering Time in Maize

    Get PDF
    An understanding of the genetic determinism of photoperiod response of flowering is a prerequisite for the successful exchange of germplasm across different latitudes. In order to contribute to resolve the genetic basis of photoperiod sensitivity in maize, a set of 201 recombinant inbred lines (RIL), derived from a temperate and tropical inbred line cross were evaluated in 5 field trials spread in short- and long-day environments.Firstly, QTL analyses for flowering time and photoperiod sensitivity in maize were conducted in individual photoperiod environments separately, and then, the total genetic effect was partitioned into additive effect (A) and additive-by-environment interaction effect (AE) by using a mixed-model-based composite interval mapping (MCIM) method.Seven putative QTL were found associated with DPS thermal time based on the data estimated in individual environments. Nine putative QTL were found associated with DPS thermal time across environments and six of them showed significant QTL×enviroment (QE) interactions. Three QTL for photoperiod sensitivity were identified on chromosome 4, 9 and 10, which had the similar position to QTL for DPS thermal time in the two long-day environment. The major photoperiod sensitive loci qDPS10 responded to both short and long-day photoperiod environments and had opposite effects in different photoperiod environment. The QTL qDPS3, which had the greatest additive effect exclusively in the short-day environment, were photoperiod independent and should be classified in autonomous promotion pathway
    • …
    corecore