45 research outputs found

    High-Energy Extracorporeal Shock Wave for Early Stage Osteonecrosis of the Femoral Head: A Single-Center Case Series

    Get PDF
    Our retrospective study assessed the effects of treatment of early stage ONFH with extracorporeal shock wave therapy. 335 patients (528 hips) were treated with shockwave therapy in our institution. Each patient underwent two sessions. The hips were divided into two groups according to whether the lateral pillar of the femoral head (LPFH) was preserved: LPFH and non-LPFH groups. Patients were followed up at 3, 6, and 12 months after the treatment. Most of the patients (83.9% hips) demonstrated pain reduction and improved mobility of the treated joint (visual analogue scale score, P=0.00006; Harris hip score, P=0.00091). During the follow-up period, 16 hips failed following femoral head collapse and required hip arthroplasty (2 hips in LPFH group and 14 hips in non-LPFH group). The lesion size decreased after ESWT. However, the differences were statistically not significant (LPFH group, P=0.091; non-LPFH group, P=0.087). A significant reduction in bone marrow edema was observed after treatment (LPFH group, P=0.007; non-LPFH group, P=0.016). High-energy extracorporeal shock wave therapy resulted in considerable improvement in early stage ONFH, which can effectively relieve pain and improve the function of the hip

    Complete genome sequence of Lactobacillus helveticus KLDS1.8701, a probiotic strain producing bacteriocin

    Get PDF
    AbstractThis study investigated the functional diversity of Lactobacillus helveticus KLDS1.8701 by carrying out a whole-genome sequence analyses of L. helveticus KLDS1.8701. L. helveticus KLDS1.8701 strain was isolated from traditional sour milk in Sinkiang of China with desirable probiotic properties. Here we report the complete genome sequence of this organism and its genetic basis for adhesion, exopolysaccharides (EPS) production, acid and bile tolerance, bacteriocin production and immune system against bacteriophage

    Assessing the in vivo ameliorative effects of Lactobacillus acidophilus KLDS1.0901 for induced non-alcoholic fatty liver disease treatment

    Get PDF
    Reputed as a significant metabolic disorder, non-alcoholic fatty liver disease (NAFLD) is characterized by high-fat deposits in the liver and causes substantial economic challenges to any country's workforce. Previous studies have indicated that some lactic acid bacteria may effectively prevent or treat NAFLD. Overall, L. acidophilus KLDS1.0901 protected against HFD-induced NAFLD by improving liver characteristics and modulating microbiota composition, and thus could be a candidate for improving NAFLD. This study aimed to assess the protective effects of L. acidophilus KLDS1.0901 on a high-fat diet(HFD)-induced NAFLD. First, hepatic lipid profile and histological alterations were determined to study whether L. acidophilus KLDS1.0901 could ameliorate NAFLD. Then, the intestinal permeability and gut barrier were explored. Finally, gut microbiota was analyzed to elucidate the mechanism from the insights of the gut–liver axis. The results showed that Lactobacillus KLDS1.0901 administration significantly decreased body weight, Lee's index body, fat rate, and liver index. L. acidophilus KLDS1.0901 administration significantly improved lipid profiles by decreasing the hepatic levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) and by increasing the high-density lipoprotein cholesterol (HDL-C) levels. A conspicuous decrease of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum was observed after L. acidophilus KLDS1.0901 administration. Meanwhile, the H&E and Oil Red O-stained staining showed that L. acidophilus KLDS1.0901 significantly reduced liver lipid accumulation of HFD-fed mice by decreasing the NAS score and lipid area per total area. Our results showed that L. acidophilus KLDS1.0901 administration decreased the interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) concentrations accompanied by the increase of interleukin-10 (IL-10). L. acidophilus KLDS1.0901 administration could improve the intestinal barrier function by upregulating the mRNA levels of occludin, claudin-1, ZO-1, and Muc-2, which were coupled to the decreases of the concentration of LPS and D-lactic acid. Notably, L. acidophilus KLDS1.0901 administration modulated the gut microbiota to a near-normal pattern. Hence, our results suggested that L. acidophilus KLDS1.0901 can be used as a candidate to ameliorate NAFLD

    Functional consequence of the MET-T1010I polymorphism in breast cancer.

    Get PDF
    Major breast cancer predisposition genes, only account for approximately 30% of high-risk breast cancer families and only explain 15% of breast cancer familial relative risk. The HGF growth factor receptor MET is potentially functionally altered due to an uncommon germline single nucleotide polymorphism (SNP), MET-T1010I, in many cancer lineages including breast cancer where the MET-T1010I SNP is present in 2% of patients with metastatic breast cancer. Expression of MET-T1010I in the context of mammary epithelium increases colony formation, cell migration and invasion in-vitro and tumor growth and invasion in-vivo. A selective effect of MET-T1010I as compared to wild type MET on cell invasion both in-vitro and in-vivo suggests that the MET-T1010I SNP may alter tumor pathophysiology and should be considered as a potential biomarker when implementing MET targeted clinical trials

    Major Traditional Probiotics: Comparative Genomic Analyses and Roles in Gut Microbiome of Eight Cohorts

    Get PDF
    Modulating gut microbiota to promote host health is well recognized. Therefore, people consume dietary products containing traditional probiotics in wishing to improve their health, and they need more research-based advices on how to select products with suitable probiotic species. Probiotic designers are sometimes confused about how to design precision products for different consumers by taking advantages of different probiotic species’ strengths. Additionally, large-scale analyses on traditional probiotic complementarity potentials and their roles in gut microbiome related to common diseases are not well understood. Here, we comprehensively analyzed 444 genomes of major traditional probiotic (sub) species (MTPS, n = 15) by combining one newly sequenced genome with all of the public NCBI-available MTPS-related genomes. The public human fecal metagenomic data (n = 1,815) of eight cohorts were used to evaluate the roles of MTPS, compared to other main gut bacteria, in disease association by examining the species enrichment direction in disease group or the control group. Our work provided a comprehensive genetic landscape and complementarity relations for MTPS and shed light on personalized probiotic supplements for consumers with different health status and the necessity that researchers and manufactures could explore novel probiotics as well as traditional ones

    Alleviation Effects of Bifidobacterium animalis subsp. lactis XLTG11 on Dextran Sulfate Sodium-Induced Colitis in Mice

    No full text
    Inflammatory bowel disease (IBD) is a chronic immune-related disease, which can occur through the dysfunction of the immune system caused by the imbalance of gut microbiota. Previous studies have reported the beneficial effects of Bifidobacterium on colitis, while the related mechanisms behind these effects have not been fully elucidated. The aim of our study is to investigate the alleviation effect of Bifidobacterium animalis subsp. lactis XLTG11 (B. lactis) on dextran sulfate sodium (DSS)-induced colitis and its potential mechanism. The results showed that B. lactis XLTG11 significantly decreased weight loss, disease activity index score, colon shortening, myeloperoxide activity, spleen weight, and colon tissue damage. Additionally, B. lactis XLTG11 significantly decreased the levels of pro-inflammatory cytokines and increased the level of anti-inflammatory cytokine. Meanwhile, high doses of B. lactis XLTG11 significantly up-regulated the expression of tight junction proteins and inhibited activation of Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MYD88)/nuclear factor-κB (NF-κB) signaling pathway. Furthermore, B. lactis XLTG11 increased the gut microbiota diversity and modulated gut microbiota composition caused by DSS. Moreover, Spearman’s correlation analysis also found that several specific gut microbiota were significantly correlated with colitis-related indicators. These results demonstrated that B. lactis XLTG11 can alleviate DSS-induced colitis by inhibiting the activation of the TLR4/MYD88/NF-κB signaling pathway, regulating inflammatory cytokines, improving intestinal barrier function, and modulating the gut microbiota

    Hip Osteonecrosis Is Associated with Increased Plasma IL-33 Level

    No full text
    The recently discovered IL-33 as an IL-1 cytokine family member has been proved to be specifically released from osteonecrotic bones. We aimed to investigate the potential role of IL-33 in the development of osteonecrosis of femoral head (ONFH). Forty patients diagnosed with ONFH and forty age-, sex-, and body mass index- (BMI-) matched healthy subjects were included in this prospective study between March 2016 and September 2016. A commercially available ELISA kit was used to test the level of plasma IL-33. The IL-33 levels were compared among different ARCO stages, CJFH types, and etiology groups. Plasma IL-33 levels were significantly higher in the ONFH patients than that in the control subjects. The levels of IL-33 did not differ significantly among the ONFH patients with different ARCO stages. The IL-33 levels of patients with CJFH type L3 were significantly higher than that of patients with types L1 and L2. No significant differences were observed in IL-33 levels between steroid-induced, alcohol-induced, and idiopathic patients. Our findings seem to indicate that IL-33 effects may be detrimental during ONFH, which appeared to be associated with the prognosis of ONFH. The IL-33 deserves particular attention in the pathogenesis of ONFH
    corecore