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Assessing the in vivo ameliorative
e�ects of Lactobacillus
acidophilus KLDS1.0901 for
induced non-alcoholic fatty liver
disease treatment

Yanbo Wang1,2, Zengbo Wang1,2, Yang Wan1,2, Furong Jin1,2,

Xiaodan Shi1,2, Zhishuang Xing1,2, Bo Tian1,2* and Bailiang Li1,2*

1College of Food, Northeast Agricultural University, Harbin, China, 2Key Laboratory of Dairy Science,

Ministry of Education, Northeast Agricultural University, Harbin, China

Reputed as a significant metabolic disorder, non-alcoholic fatty liver disease

(NAFLD) is characterized by high-fat deposits in the liver and causes substantial

economic challenges to any country’s workforce. Previous studies have indicated

that some lactic acid bacteria may e�ectively prevent or treat NAFLD. Overall,

L. acidophilus KLDS1.0901 protected against HFD-induced NAFLD by improving

liver characteristics and modulating microbiota composition, and thus could be

a candidate for improving NAFLD. This study aimed to assess the protective

e�ects of L. acidophilus KLDS1.0901 on a high-fat diet(HFD)-induced NAFLD.

First, hepatic lipid profile and histological alterations were determined to study

whether L. acidophilus KLDS1.0901 could ameliorate NAFLD. Then, the intestinal

permeability and gut barrier were explored. Finally, gut microbiota was analyzed

to elucidate the mechanism from the insights of the gut–liver axis. The results

showed that Lactobacillus KLDS1.0901 administration significantly decreased

body weight, Lee’s index body, fat rate, and liver index. L. acidophilus KLDS1.0901

administration significantly improved lipid profiles by decreasing the hepatic levels

of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol

(LDL-C) and by increasing the high-density lipoprotein cholesterol (HDL-C)

levels. A conspicuous decrease of alanine aminotransferase (ALT) and aspartate

aminotransferase (AST) in serum was observed after L. acidophilus KLDS1.0901

administration. Meanwhile, the H&E and Oil Red O-stained staining showed that L.

acidophilus KLDS1.0901 significantly reduced liver lipid accumulation of HFD-fed

mice by decreasing the NAS score and lipid area per total area. Our results showed

that L. acidophilus KLDS1.0901 administration decreased the interleukin-6 (IL-6),

interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) concentrations

accompanied by the increase of interleukin-10 (IL-10). L. acidophilus KLDS1.0901

administration could improve the intestinal barrier function by upregulating the

mRNA levels of occludin, claudin-1, ZO-1, and Muc-2, which were coupled

to the decreases of the concentration of LPS and D-lactic acid. Notably, L.

acidophilus KLDS1.0901 administration modulated the gut microbiota to a near-

normal pattern. Hence, our results suggested that L. acidophilus KLDS1.0901 can

be used as a candidate to ameliorate NAFLD.
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Introduction

Soaring obesity rates have been closely linked to non-
communicable metabolic diseases like chronic liver and
cardiovascular diseases as approximately 90% of patients are
diagnosed with severe obesity and non-alcoholic fatty liver
disease (NAFLD) (1, 2). NAFLD is a highly prevalent liver disease
characterized by non-frequent alcohol consumption (3, 4) and
could progress to serious conditions such as liver fibrosis, cancer,
and cirrhosis (52). Because the pathogenesis of NAFLD is still
unclear, studies are ongoing to develop an effective treatment
protocol for NAFLD (3). Natural products incorporated into
diets (ginkgolide C, polyphenols, yeast-fermented wall-broken
bee pollen, among others) could be effective against NAFLD
(5–7). Furthermore, next-generation sequencing techniques have
revealed a possible correlation between NAFLD pathogenesis and
changes in the intestinal microbiome (8), thus offering a potential
strategy for diet-induced NAFLD (9).

As a widely used probiotic in foods, Lactobacillus acidophilus
exerts several benefits after proliferating in the gastrointestinal
tract, including ameliorating type 2 diabetes, enteric infections,
allergic dermatitis, and renal failure and hepatic failure, various
forms of inflammatory bowel disease, lactose intolerance, and
possible anticancer activity. Furthermore, other studies have
reported its potential to control serum cholesterol concentrations,
reduce tumor development risks, and ensure better digestion to
boost host immunity (10–12). Researchers have been paying more
attention to L. acidophilus to improve abnormal glucose and lipid
metabolism, especially NAFLD. Andreasen et al. reported that
L. acidophilus NCFM could improve insulin sensitivity and the
systemic inflammatory response in human subjects (52). It has
been found that L. acidophilus LA5 could improve the saturated
fat-induced obesity mouse model through the enhanced intestinal
Akkermansia muciniphila (5). L. acidophilus NX2-6 showed
the potential against oleic acid-induced steatosis, mitochondrial
dysfunction, endoplasmic reticulum stress, and inflammatory
responses (6). L. acidophilus SNZ 86 could alleviate Western diet-
induced non-alcoholic fatty liver disease in rats via modulation of
autophagy through the AMPK/SIRT-1 pathway (7). An Egyptian
study by Abdel Monem with Zigazag University randomized
patients with NASH to probiotic Acidophilus capsule (2 billion
Lactobacillus acidophilus) or placebo for 17 months and measured
improved AST and ALT in treated patients (8). L. acidophilus
showed a significant reduction in the liver/body weight ratio and a
significant improvement in steatosis compared to the patients with
NAFLD (9). Yogurt fermented with L. acidophilus improves body
mass index and fasting insulin levels without affecting serum leptin
and adiponectin levels in NAFLD (10).

Lactobacillus acidophilus KLDS1.0901 was isolated from
traditional fermented dairy products in Sinkiang Province, China,
and preserved in our laboratory. Our previous studies showed
L. acidophilus KLDS1.0901 with antioxidative activity had good
tolerance to acid and bile salt and strong adhesion ability
(11). Furthermore, L. acidophilus KLDS1.0901 could alleviate
type 2 diabetes by regulating hepatic glucose, lipid metabolism,
and gut microbiota in mice (12). L. acidophilus KLDS1.0901
also could prevent chronic alcoholic liver injury in mice by
protecting the intestinal barrier and regulating gut microbiota

and liver-related pathways (13). Thus, we hypothesized that L.

acidophilus KLDS1.0901 would possess the ability to alleviate
NAFLD. The aim of this study was to assess the protective effects of
L. acidophilusKLDS1.0901 on HFD-induced NAFLD. First, hepatic
lipid profile and histological alterations were determined to study
whether L. acidophilus KLDS1.0901 could ameliorate NAFLD.
However, the intestinal permeability and gut barrier were explored.
Finally, gut microbiota was analyzed to elucidate the mechanism
from the insights of the gut–liver axis.

Materials and methods

Bacterial strain and culture

Traditional fermented dairy products from Xinjiang Province,
China were used to obtain Lactobacillus acidophilus KLDS 1.0901
and stored in 20% (v/v) glycerol at −20◦C. The bacteria was
incubated for 18 h in de Man Rogosa and Sharpe (MRS) broth (2%
v/v) at 37◦C and subcultured two times. Bacterial cultures were
then centrifuged (6,000 rpm for 10min at 4◦C), washed three times
with PBS solution, and the supernatant discarded. Cells were then
resuspended in PBS at 5× 109 CFU/mL.

Animals and experiment design

Following the method of Nguyen et al. (13), 6-week-old male
C57BL/6J mice (n = 24) were obtained from the Vital River
Laboratory Animal Technology Company (Beijing, China). Study
animals were housed in a sterile animal room at 22 ±0.5◦C,
55±5% humidity with 12 h light/12 h dark cycles. They had ad

libitum access to chow and water ad libitum throughout the study.
Following a 7-day acclimatization phase, mice were randomly
divided into three groups (n = 8 mice per group). Control group
(NC) mice were fed a D12450B diet, while others were fed a
D12492 high-fat diet for 8 weeks. Feed formulas are reported in
Supplementary Table S1. Both groups were gavaged with 0.2mL
of sterile PBS solution, and for the L. acidophilus KLDS1.0901
group (KLDS1.0901), the mice were administered with 0.2mL of
the L. acidophilus KLDS1.0901 (109 CFU/d). Study animals were
humanely sacrificed after 12 h of fasting and blood samples were
obtained. Colon and liver samples as well as colon and cecum
content were collected and stored at−80◦C for further analysis. The
Northeast Agricultural University Guide for the Care and Use of
Laboratory Animals was followed to ensure strict ethical animal
procedures. In addition, our study was approved by the Northeast
Agricultural University Animal Ethics Committee.

Histopathological analysis of liver

In reference to the previous method with a slight modification
(14), we placed all liver tissues in paraffin, in thin slices of
5µm thick, and stained with hematoxylin and eosin (H&E) and
oil O red after deparaffinization. The sections were observed
under a light microscope (Nikon E100, 200×magnification) for
lesions and other histological features. The lipid droplet area
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FIGURE 1

E�ect of L. acidophilus KLDS1.0901 administration on body weight (A), body fat rate (B), Lee’s index (C), and liver index (D) of HFD-fed mice. NC,

normal control group; HFD, high-fat diet group; and KLDS1.0901, L. acidophilus KLDS1.0901 group. *p < 0.05 and **p < 0.01 indicated that there

was a significant di�erence when compared with the HFD group.

(percentage of total area) of each group was analyzed using the
software Image J. NAFLD activity integral was calculated based on
Supplementary Table S2.

Determination of TC, TG, LDL-C, and HDL-C in
liver

The liver tissues were homogenized in aseptic PBS (1:9, w/v),
succeeded by centrifugation at 10,000 rpm for 10min at 4◦C. The
concentration of TC, TG, HDL-C, and LDL-C was detected using
mouse ELISA kits (Conodi creatures, Fujian, China) based on the
instructions of the manufacturer.

Determination of ALT and AST in Serum
Each mice group’s serum AST and ALT levels were obtained

using mouse kits (Conodi Creatures, Fujian, China) by following
the manufacturer’s directives.

ELISA measurement of inflammatory cytokines
Aseptic PBS (1:9, w/v) was used to homogenize mice

liver tissues, followed by centrifugation (10,000 rpm, 10min,
4◦C). Based on the manufacturer’s directives, we identified the

concentration of TNF-α, IL-6, IL-10, and IL-1β with mouse ELISA
kits (Conodi creatures, Fujian, China).

Measurement of the intestinal permeability

Following the manufacturer’s instructions, the Enzyme-Linked
Immunosorbent Assay (ELISA) kits (Conodi creatures, Fujian,
China) were used to evaluate the concentrations of D-lactic acid
(D-LA) and lipopolysaccharide (LPS) in mice serum samples. The
serum samples were acquired before the mice were sacrificed.

Real-time quantitative polymerase chain
reaction (RT-qPCR) analysis

Real-time quantitative polymerase chain reaction was used
to determine relative mRNA expression levels of tight junction
protein ZO-1, claudin-1, occludin, and Muc-2. Colon tissue
RNA levels were obtained and quantified using the Total
RNA kit (Vazyme, Nanjing, China), and 2000C Ultra-micro
UV spectrophotometer (Thermo Fisher Scientific Inc., USA),
respectively.We used the Transcriptor First Strand cDNA Synthesis
kit (Promega, Madison, USA) to synthesize cDNA for this study.
The GoTaq◦R SYBR-Green qPCR Master Mix (Promega, Madison,
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FIGURE 2

E�ects of L. acidophilus KLDS1.0901 administration on lipid accumulation in HFD-fed mice. NC, normal control group; HFD, high-fat diet group; and

KLDS1.0901, L. acidophilus KLDS1.0901 group. (A) Hepatic triglyceride (TG) level; (B) hepatic total cholesterol (TC) level; (C) hepatic low-density

lipoprotein cholesterol (HDL-C) level; and (D) hepatic high-density lipoprotein cholesterol (LDL-C) level. Values are expressed as mean ± SD (n = 8).

**p < 0.01 indicated that there was a significant di�erence when compared with the HFD group.

USA) was used to perform RT-qPCR corrections. The relative
mRNA expressions of specific genes were calculated by the
2−11CT method. GAPDH genes are used as internal reference
genes. Supplementary Table S3 displays the specific gene primers as
designed by Sangon Biotech Co., Ltd (Shanghai, China).

DNA extraction and 16S rRNA gene
sequencing

Fecal samples served as the substrate for the total bacterial
genomic DNA using the Fast DNA SPIN extraction kits (MP
Biomedicals, Santa Ana, CA, USA). DNA molecular size
and quantification were performed using a 0.8% agarose gel
electrophoresis and the NanoDrop NC-2000 spectrophotometer,
respectively. The V3–V4 region of bacterial 16S rRNA
genes was then amplified using PCR with the forward
primer 338F (5’-ACTCCTACGGGAGGCAGCA-3’) and the
reverse primer 806R (5’-GGACTACHVGGGTWTCTAAT-
3’). PCR amplicons were purified with Agencourt AMPure
Beads (Beckman Coulter, Indianapolis, IN) and quantified
using the PicoGreen dsDNA Assay Kit (Invitrogen,
Carlsbad, CA, USA). Finally, the MiSeq Reagent kit v3
(Shanghai Personal Biotechnology Co., Ltd, Shanghai, China)

was used to carry out the sequencing on the Illumina
MiSeq platform.

Statistical analysis

All data were analyzed using SPSS 22.0 software (SPSS Inc.,
Chicago, IL, USA). Statistical analysis of Duncan’s multiple range
tests after one-way analysis of variance (ANOVA). For all analyses,
at p < 0.05, the differences were considered significant.

Results

E�ect of L. acidophilus KLDS1.0901
administration on body weight, body fat
rate, Lee’s index, and liver index of HFD-fed
mice

High-fat diet significantly increased (p < 0.01) the final body
weight, whereas the L. acidophilus KLDS1.0901 administration
reduced (p < 0.01) it when compared with the HFD group
(Figure 1A). The body fat rate of the mice in the HFD group was
sharply elevated when compared to that of the NC group (p< 0.01),
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FIGURE 3

E�ects of L. acidophilus KLDS1.0901 administration on liver function. NC, normal control group; HFD, high-fat diet group; and KLDS1.0901, L.

acidophilus KLDS1.0901 group. (A) Serum alanine aminotransferase (ALT) level; and (B) serum aspartate aminotransferase (AST) level. Values are

expressed as mean ± SD(n = 8). **p < 0.01 indicated that there was a significant di�erence when compared with the HFD group.

however, L. acidophilus KLDS1.0901 administration inhibited the
increase (p < 0.01) (Figure 1B). Lee’s index in the HFD group
was higher (p < 0.01) than that in the control group, but Lee’s
index was remarkably decreased (p < 0.01) after L. acidophilus

KLDS1.0901 administration (Figure 1C). In the analysis of the liver
index, compared with the NC group, mice in the HFD group
showed amarked increase (p< 0.01), which was reversed (p< 0.05)
by the L. acidophilus KLDS1.0901 administration (Figure 1D).

E�ect of L. acidophilus KLDS1.0901
administration on lipid accumulation and
liver function in HFD-fed mice

To analyze hepatic lipid accumulation, the levels of TG, TC,
LDL-C, and HDL-C in the liver of mice were determined by
ELISA. As shown in Figures 2A–D. The lipid profiles including TG,
TC, and LDL-C were pronouncedly (p < 0.01) enhanced in the
HFD group when compared with the control group. However, L.
acidophilus KLDS1.0901 administration suppressed the increases
in these lipid parameters (p < 0.01). On the contrary, the HDL-C
level was significantly lowered (p < 0.01) in the HFD group when
compared with that in the NC group, L. acidophilus KLDS1.0901
administration reversed this trend (p < 0.01). As shown in
Figures 3A, B. In order to study liver function, the serum ALT
and AST levels of mice were examined by ELISA. A significant
increase (p < 0.01) of ALT and AST in serum was observed in the
HFD group. Notably, L. acidophilus KLDS1.0901 administration
conspicuously inhibited this effect (p < 0.01).

E�ects of L. acidophilus KLDS1.0901
administration on histological alterations of
liver

In the NC group, there was no steatosis, and the tissue structure
was clear and complete. The H&E staining showed that HFD

blurred the boundary and induced the regular round fat hole. In
particular, HFD detrimentally caused substantial fat accumulation
in the liver during 8 weeks of feeding, whereas L. acidophilus

KLDS1.0901 administration effectively restored the trend caused by
HFD (Figure 4A). As shown in Figure 4B, in view of the NAFLD
activity score (NAS), the HFD-induced increase was significantly
(p < 0.01) reduced by L. acidophilus KLDS1.0901 administration.
Quantification of lipid area per total area also suggested that L.
acidophilus KLDS1.0901 administration significantly reduced (p <

0.01) liver lipid accumulation of HFD-fed mice (Figure 4C).

E�ect of L. acidophilus KLDS1.0901
administration on hepatic inflammation

As shown in Figure 5, our cytokine analyses showed that the
concentrations of IL-6, IL-1β, and TNF-α increased considerably
in the HFD mice compared to the NC group (p < 0.01); however,
L. acidophilus KLDS1.0901 administration significantly decreased
them (p < 0.01). While the concentration of IL-10 was significantly
decreased (p < 0.01), L. acidophilus KLDS1.0901 administration
significantly increased it (p < 0.05).

E�ect of L. acidophilus KLDS1.0901
administration on the intestinal
permeability and gut barrier

Lipopolysaccharides and D-lactic acid are standard indicators
of intestinal barrier damage, the concentration of LPS and D-lactic
acid was examined by ELISA. As shown in Figures 6A, B, the
concentration of LPS and D-lactic acid increased substantially (p
< 0.01) in the HFD group, resulting in the anticipated mucosal
damage, but L. acidophilus KLDS1.0901 administration drastically
reduced (p < 0.01) the concentration of LPS and D-lactic acid,
thus improving intestinal permeability. To study the effect of L.
acidophilus KLDS1.0901 administration on the gut barrier, we
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FIGURE 4

E�ects of L. acidophilus KLDS1.0901 administration on histological alterations of the liver. NC, normal control group; HFD, high-fat diet group; and

KLDS1.0901, L. acidophilus KLDS1.0901 group. (A) The representative histological changes of liver sections; (B) NAFLD Activity Score (NAS); and (C)

quantification of Oil Red O-stained hepatic lipid droplets. Values are expressed as mean ± SD (n = 8). **p < 0.01 indicated that there was a significant

di�erence when compared with the HFD group.

determined the mRNA levels of occludin, claudin-1, ZO-1, and
Muc-2. The results showed that themRNA levels of these four genes
were strikingly downregulated (p < 0.01) in the HFD group, but L.
acidophilus KLDS1.0901 administration significantly upregulated
(p < 0.01) the mRNA levels of these four genes (Figures 6C–F).

E�ect of L. acidophilus KLDS1.0901
administration on gut microbiota

We sequenced the 16S rDNA V3–V4 variable region to analyze
the cecal gut microbiota. This enabled us to gain insights as
to whether L. acidophilus KLDS1.0901 administration modulated
the bacterial communities of NAFLD-induced mice. The results
showed that the OTU determined the gut microbiota diversity
of each study group, with the common abundance shown with
a Venn diagram (177 OTU in all groups). Our results showed
207, 211, and 216 different microorganisms in the NC, HFD, and
MC groups, respectively (Figure 7A). The α-diversity reflecting
the microbial community diversity was assessed by the Chao 1
and Shannon indexes (Figures 7B, C). There were no significant
changes in Chao 1 index among the three groups. However, the
Shannon index in the HFD mice was lower than that in the NC
group (p < 0.05), which was significantly elevated by L. acidophilus
KLDS1.0901 administration (p < 0.05). The hierarchical clustering
tree results of the current study grouped the NC and KLDS 1.0901
cohorts together and then clustered with the HFD communities
(Figure 7D).

Our phylum-level results indicated that Firmicutes and
Bacteriodetes make up at least 80% of all groups (Figure 8A). The
HFD group had a high abundance of Firmicutes and depleted
levels of Bacteriodetes. This group also had a significantly high
ratio of Firmicutes to Bacteriodetes. We also observed that L.

acidophilus KLDS1.0901 administration reversed this trend by

lowering Firmicutes levels, increasing Bacteroidetes abundance,
and reducing the HFD-induced Firmicutes-to-Bacteroidetes ratio.

The genus-level gut microbiota results for the different groups
are shown in Figure 8B. We observed that in the HFD group,
the relative abundances of Roseburia, Lachnospiraceae UCG-006,
Bacteroides, and Enterorhabdus were much higher than that in the
NC group, which were suppressed by L. acidophilus KLDS1.0901
administration. However, the HFD group had low levels of
Blautia, Alistipes,Oscillibacter, Faecalibaculum, Ruminiclostridium,
Lactobacillus, and Ruminococcaceae UCG-009, which were reversed
by L. acidophilus KLDS1.0901 administration. Our observations
indicated that L. acidophilus KLDS1.0901 administration
modulated the composition of the intestinal microorganisms of
HFD-fed mice.

Discussion

The prevalence of NAFLD has been linked to the onset and

exacerbation of other metabolic disorders like type 2 diabetes
(T2D) and obesity, thus posing a significant public health concern.
It has been posited previously that the progression of NAFLD
could be driven by lipid metabolism disorders (2). Accumulating
evidence suggests that some lactic acid bacteria have the potential to
relieve NAFLD (13, 15). Our previous studies showed L. acidophilus
KLDS1.0901 with antioxidative activity had good tolerance to
acid and bile salt and strong adhesion ability (11). Furthermore,
L. acidophilus KLDS1.0901 could alleviate type 2 diabetes by
regulating hepatic glucose, lipid metabolism, and gut microbiota in
mice (12). L. acidophilus KLDS1.0901 also could prevent chronic
alcoholic liver injury in mice by protecting the intestinal barrier
and regulating gut microbiota and liver-related pathways (13).
However, the underlying mechanisms were unclear. Thus, in this
study, the possible mechanisms by which the same lactobacilli
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FIGURE 5

E�ects of L. acidophilus KLDS1.0901 administration on hepatic inflammation. NC, normal control group; HFD, high-fat diet group; and KLDS1.0901,

L. acidophilus KLDS1.0901 group. (A) IL-6; (B) IL-1β; (C) TNF-α; and (D) IL-10. Values are expressed as mean ± SD (n = 8). *p < 0.05 and **p < 0.01

indicated that there was a significant di�erence when compared with the HFD group.

strains could prevent obesity were mined and increased the final
body weight, body fat rate, Lee’s index, and liver index.

In this study, HFD significantly increased the final body weight,
body fat rate, Lee’s index, and liver index, which was reversed by
the L. acidophilus KLDS1.0901 administration, which was in line
with the results of Naudin et al. (16), expressing L. acidophilus

KLDS1.0901 had the protective effects of HFD-induced NAFLD.
HFD (manifested in hyperlipidemia) is known to trigger NAFLD
by elevating TC, TG, and LDL-C levels, with a corresponding
drop in host HDL-C levels (17). Interestingly, some prior studies
have confirmed that reducing TC, TG, and LDL-C levels can
alleviate NAFLD (18, 19, 51). In this study, the HFD significantly
elevated the hepatic levels of TC, TG, and LDL-C and lowered
the HDL-C levels, resulting in lipid metabolism disorder. However,
L. acidophilus KLDS1.0901 administration reversed this trend and
agrees with the effects of L. plantarum NA136 and L. johnsonii

BS15 as reported earlier (20, 21). Meanwhile, the H&E and Oil
Red O-stained staining showed that HFD detrimentally caused
substantial fat accumulation in the liver during 8 weeks of feeding
and increased the NAS score and lipid area per total area. These
results indicated that L. acidophilus KLDS1.0901 administration
could have protective effects from hepatic steatosis due to lowered
lipid content in NAFLD mice.

Furthermore, elevated lipid accumulation can be toxic and
trigger liver injury via hepatic parenchymal cell inflammation.
These liver functions are mostly measured by serum AST and ALT
levels (22). In this study, a significant increase of ALT and AST
in serum was observed in the HFD group. Notably, L. acidophilus

KLDS1.0901 administration conspicuously inhibited this effect.
These results demonstrated that L. acidophilus KLDS1.0901
administration protects liver functions andmitigates HFD-induced
liver injury. Host tissue damage and repair, immune modulation,
and inflammation activities are generally regulated by cytokines.
Similarly, cytokines such as IL-6, IL-1β , and TNF-α can be
mechanistically stimulated by intestinal bacterial communities
(23). It has been reported that Lactobacillus and Pediococcus

ameliorate the progression of NAFLD through the modulation
of cytokines (24). Our results showed that HFD induction
increased the IL-6, IL-1β , and TNF-α concentrations accompanied
by the decrease of IL-10. However, L. acidophilus KLDS1.0901
administration effectively restored the trend, indicating that L.

acidophilus KLDS1.0901 administration could alleviate the NAFLD
by modulating the concentrations of cytokines.

The gut and the liver communicate through the gut–liver axis,
which consists of the gut, the liver, and the intestinal barrier (25).
Tight junctions, composed of ZO-1, occludin, and claudin, link the
intestinal epithelial cells and maintain intestinal barrier integrity
(26). Both intestinal barrier malfunction and dysbiosis of the gut
microbiota play important roles in the pathophysiology of liver
diseases (27). NAFDL-associated gut microbiota dysbiosis induced
by long-term consumption of a high-fat and high-fructose diet
may disrupt intestinal barrier function by reducing the expression
of intestinal tight junction proteins (occludin, claudin-1, and ZO-
1) (28).

Homeostasis in intestinal epithelial cell permeability and
regulating barrier functions are modulated by ZO-1 (29), with
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FIGURE 6

E�ects of L. acidophilus KLDS1.0901 administration on the intestinal permeability and gut barrier. NC, normal control group; HFD, high-fat diet

group; and KLDS1.0901, L. acidophilus KLDS1.0901 group. (A) Serum LPS concentration; (B) serum D-lactic acid concentration; (C) occludin; (D)

claudin-1; (E) ZO-1; and (F) Muc-2. Values are expressed as mean ± SD (n = 8). **p < 0.01 indicated that there was a significant di�erence when

compared with the HFD group.

occludin serving as a tight junction protein molecule (30). Claudins
andmucins (Muc1–Muc6), on the contrary, regulate inflammation,
intestinal epithelial homeostasis, and the colon mucus layer (31,
32). Intestinal inflammation typically results when the absence of
tight junctions weakens the intestinal barriers and allows bacterial
invasion (33). Our results showed that the mRNA levels of these
four genes were strikingly downregulated in the HFD group, but
L. acidophilus KLDS1.0901 administration upregulated the mRNA
levels of these four genes. Intestinal inflammation results in “leaky
gut,” a condition where bacteria and their metabolites trigger the

release of cellular inflammatory factors with deleterious effects on
the host (34). Several previous investigations have demonstrated
that LPS regulates intestinal flora and inflammation responses
involved in the onset of metabolic diseases (35). In particular,
NAFLD onset has been correlated with the presence of bacterial
LPS from enteric gram-negative flora (53). In this study, the
concentration of LPS and D-lactic acid was significantly increased
(p < 0.05) in the HFD group, but L. acidophilus KLDS1.0901
administration could drastically reduce the concentration of LPS
and D-lactic acid. These findings indicated that L. acidophilus
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FIGURE 7

L. acidophilus KLDS1.0901 administration regulates (A) the number of OTUs, (B) Chao 1 index, (C) Shannon index, and (D) the hierarchical clustering

tree of weighted UniFrac distances. NC, normal control group; HFD, high-fat diet group; and KLDS1.0901, L. acidophilus KLDS1.0901 group. Values

are expressed as mean ± SD (n = 8). *p < 0.05 indicated that there was a significant di�erence when compared with the HFD group. NS indicated

that there was no significant di�erence when compared with the HFD group.

KLDS1.0901 administration could improve the intestinal barrier
function induced by HFD.

The gut microbiome is a key environmental factor in the
onset of NAFLD (36). Firmicutes and Bacteroidetes are essential
participants in host energy metabolism (37). The phylum-level
study of a mixed lactobacilli treatment administered to HFD-fed
mice indicated that the Firmicutes bacterial group increased with
a corresponding drop in the relative abundance of Bacteriodetes
(38–40). These researchers discovered that an increased Firmicutes
to Bacteriodetes ratio increased calories absorption, harvestable
energy levels, and obesity biomarkers (41, 42), which was in line
with the results of Yu et al. (15). The results showed that the
F/B ratio was significantly lower in the L. acidophilus KLDS1.0901
group, suggesting that 1.0901 may regulate energy metabolism in
mice by modulating intestinal flora, which, in turn, affects the
degree of fat accumulation.

The genus-level gut microbiota results for the different groups
are shown in Figure 8B. We observed that in the HFD group,
the relative abundances of Roseburia, Lachnospiraceae UCG-

006, Bacteroides, and Enterorhabdus were much higher when
compared to the NC group, which were suppressed by L.

acidophilus KLDS1.0901 administration. However, the HFD group
had low levels of Blautia, Alistipes, Oscillibacter, Faecalibaculum,
Ruminiclostridium, Lactobacillus, and Ruminococcaceae UCG-009,
which were reversed by L. acidophilus KLDS1.0901 administration.
Our observations indicated that L. acidophilus KLDS1.0901

administration modulated the composition of the intestinal
microbiome of HFD-fed mice.

Genus-level results of the current study indicate that the relative
abundances of Roseburia, Lachnospiraceae UCG-006, Bacteroides,
and Enterorhabdus elevated while that of Blautia, Alistipes,
Oscillibacter, Faecalibaculum, Ruminiclostridium, Lactobacillus,
and Ruminococcaceae UCG-009 were significantly decreased in
the HFD group when compared to the NC group. It has been
reported that Roseburia, which is known for suppressing SCFAs-
producing bacteria, was enriched in HFD-induced NAFLD mice
(43, 44). Enterorhabdus secretes LPS and is thus implicated
in obesity, insulin resistance, and pro-inflammatory factors
proliferation (21). Moreover, a substantial relative abundance
of Bacteroides has been observed in individuals with NAFLD
(45). Conversely, SCFAs secreted by, Blautia, is known to be
pathogen-inhibiting and promotes healthy intestinal microbiota
(46). Alistipes was negatively correlated with obesity (47).
Lactobacillus is known to be pathogen-inhibiting and promotes
healthy intestinal microbiota (48). Previous observations note
that HFD reduced the relative abundance of Faecalibaculum

(49). In addition, Ruminiclostridium were linked to weight
reduction or a lean phenotype (50). In summary, L. acidophilus
KLDS1.0901 further alleviates NAFLD through the intestinal-
liver axis by regulating the ecological imbalance of intestinal
microbiota caused by a high-fat diet and improving intestinal
barrier function.
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FIGURE 8

Changes of the gut microbiota at the phylum (A) and genus (B) level after L. acidophilus KLDS1.0901 administration. NC, normal control group; HFD,

high-fat diet group; and KLDS1.0901, L. acidophilus KLDS1.0901 group.

Conclusion

Lactobacillus KLDS1.0901 administration could significantly
decrease body weight gain, Lee’s index body, fat rate, and liver
index. LactobacillusKLDS1.0901 administration could significantly
improve lipid profiles by decreasing the hepatic levels of TC, TG,
and LDL-C and ALT and AST in serum and increasing the HDL-
C levels. L. acidophilus KLDS1.0901 administration could decrease
the IL-6, IL-1β , and TNF-α concentrations accompanied by the
decrease of IL-10. L. acidophilus KLDS1.0901 administration could
improve the intestinal barrier function by upregulating the mRNA
levels of occludin, claudin-1, ZO-1, andMuc-2, which were coupled

to the decreases of the concentration of LPS and D-lactic acid.
Notably, L. acidophilus KLDS1.0901 administration modulated the
gut microbiota to the normal pattern. Hence, our study provides
guidance for the selection and application of presumed probiotics
in the treatment of NAFLD.
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