452 research outputs found

    Highly efficient, tunable single photon source based on single molecules

    Get PDF
    The authors studied spatially isolated terrylene molecules immobilized in a quasiplanar optical λ/2-microresonator using confocal microscopy and spectroscopy at variable temperatures. At T = 1.8 K, they observed individual molecules relaxing into microresonator-allowed vibronic levels of their electronic ground state by emission of single fluorescence photons. Coupling the purely electronic transition of embedded molecules to the longitudinal photonic mode of the microresonator resulted in an ultimate spectral narrowing and an increased collection efficiency of the emitted single photon wave trains

    Can we predict which COVID-19 patients will need transfer to intensive care within 24 hours of floor admission?

    Get PDF
    Background Patients with COVID‐19 can present to the emergency department (ED) at any point during the spectrum of illness, making it difficult to predict what level of care the patient will ultimately require. Admission to a ward bed, which is subsequently upgraded within hours to an intensive care unit (ICU) bed, represents an inability to appropriately predict the patient's course of illness. Predicting which patients will require ICU care within 24 hours would allow admissions to be managed more appropriately. Methods This was a retrospective study of adults admitted to a large health care system, including 14 hospitals across the state of Indiana. Included patients were aged ≄ 18 years, were admitted to the hospital from the ED, and had a positive polymerase chain reaction (PCR) test for COVID‐19. Patients directly admitted to the ICU or in whom the PCR test was obtained > 3 days after hospital admission were excluded. Extracted data points included demographics, comorbidities, ED vital signs, laboratory values, chest imaging results, and level of care on admission. The primary outcome was a combination of either death or transfer to ICU within 24 hours of admission to the hospital. Data analysis was performed by logistic regression modeling to determine a multivariable model of variables that could predict the primary outcome. Results Of the 542 included patients, 46 (10%) required transfer to ICU within 24 hours of admission. The final composite model, adjusted for age and admission location, included history of heart failure and initial oxygen saturation of 6.4 or glomerular filtration rate < 46. The odds ratio (OR) for decompensation within 24 hours was 5.17 (95% confidence interval [CI] = 2.17 to 12.31) when all criteria were present. For patients without the above criteria, the OR for ICU transfer was 0.20 (95% CI = 0.09 to 0.45). Conclusions Although our model did not perform well enough to stand alone as a decision guide, it highlights certain clinical features that are associated with increased risk of decompensation

    Se-methylselenocysteine inhibits phosphatidylinositol 3-kinase activity of mouse mammary epithelial tumor cells in vitro

    Get PDF
    INTRODUCTION: Se-methylselenocysteine (MSC), a naturally occurring selenium compound, is a promising chemopreventive agent against in vivo and in vitro models of carcinogen-induced mouse and rat mammary tumorigenesis. We have demonstrated previously that MSC induces apoptosis after a cell growth arrest in S phase in a mouse mammary epithelial tumor cell model (TM6 cells) in vitro. The present study was designed to examine the involvement of the phosphatidylinositol 3-kinase (PI3-K) pathway in TM6 tumor model in vitro after treatment with MSC. METHODS: Synchronized TM6 cells treated with MSC and collected at different time points were examined for PI3-K activity and Akt phosphorylation along with phosphorylations of Raf, MAP kinase/ERK kinase (MEK), extracellular signal-related kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). The growth inhibition was determined with a [(3)H]thymidine incorporation assay. Immunoblotting and a kinase assay were used to examine the molecules of the survival pathway. RESULTS: PI3-K activity was inhibited by MSC followed by dephosphorylation of Akt. The phosphorylation of p38 MAPK was also downregulated after these cells were treated with MSC. In parallel experiments MSC inhibited the Raf–MEK–ERK signaling pathway. CONCLUSION: These studies suggest that MSC blocks multiple signaling pathways in mouse mammary tumor cells. MSC inhibits cell growth by inhibiting the activity of PI3-K and its downstream effector molecules in mouse mammary tumor cells in vitro

    Characteristics of COVID-19 Patients with Bacterial Co-infection Admitted to the Hospital from the Emergency Department in a Large Regional Healthcare System

    Get PDF
    Introduction The rate of bacterial coinfection with SARS‐CoV‐2 is poorly defined. The decision to administer antibiotics early in the course of SARS‐CoV‐2 infection depends on the likelihood of bacterial coinfection. Methods We performed a retrospective chart review of all patients admitted through the emergency department with confirmed SARS‐CoV‐2 infection over a 6‐week period in a large healthcare system in the United States. Blood and respiratory culture results were abstracted and adjudicated by multiple authors. The primary outcome was the rate of bacteremia. We secondarily looked to define clinical or laboratory features associated with bacteremia. Results There were 542 patients admitted with confirmed SARS‐CoV‐2 infection, with an average age of 62.8 years. Of these, 395 had blood cultures performed upon admission, with six true positive results (1.1% of the total population). An additional 14 patients had positive respiratory cultures treated as true pathogens in the first 72 h. Low blood pressure and elevated white blood cell count, neutrophil count, blood urea nitrogen, and lactate were statistically significantly associated with bacteremia. Clinical outcomes were not statistically significantly different between patients with and without bacteremia. Conclusions We found a low rate of bacteremia in patients admitted with confirmed SARS‐CoV‐2 infection. In hemodynamically stable patients, routine antibiotics may not be warranted in this population

    Size-Segregated Particle Number Concentrations and Respiratory Emergency Room Visits in Beijing, China

    Get PDF
    BACKGROUND: The link between concentrations of particulate matter (PM) and respiratory morbidity has been investigated in numerous studies. OBJECTIVES: The aim of this study was to analyze the role of different particle size fractions with respect to respiratory health in Beijing, China. METHODS: Data on particle size distributions from 3 nm to 1 mu m; PM10 (PM &lt;= 10 mu m), nitrogen dioxide (NO2), and sulfur dioxide concentrations; and meteorologic variables were collected daily from March 2004 to December 2006. Concurrently, daily counts of emergency room visits (ERV) for respiratory diseases were obtained from the Peking University Third Hospital. We estimated pollutant effects in single-and two-pollutant generalized additive models, controlling for meteorologic and other time-varying covariates. Time-delayed associations were estimated using polynomial distributed lag, cumulative effects, and single lag models. RESULTS: Associations of respiratory ERV with NO2 concentrations and 100-1,000 nm-particle number or surface area concentrations were of similar magnitude-that is, approximately 5% increase in respiratory ERV with an interquartile range increase in air pollution concentration. In general, particles &lt;50 nm were not positively associated with ERV, whereas particles 50-100 nm were adversely associated with respiratory ERV, both being fractions of ultrafine particles. Effect estimates from two-pollutant models were most consistent for NO2. CONCLUSIONS: Present levels of air pollution in Beijing were adversely associated with respiratory ERV. NO2 concentrations seemed to be a better surrogate for evaluating overall respiratory health effects of ambient air pollution than PM10 or particle number concentrations in Beijing.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000289065900032&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Environmental SciencesPublic, Environmental &amp; Occupational HealthToxicologySCI(E)37ARTICLE4508-51311

    Sheets of vertically aligned BaTiO<sub>3</sub> nanotubes reduce cell proliferation but not viability of NIH-3T3 cells

    Get PDF
    All biomaterials initiate a tissue response when implanted in living tissues. Ultimately this reaction causes fibrous encapsulation and hence isolation of the material, leading to failure of the intended therapeutic effect of the implant. There has been extensive bioengineering research aimed at overcoming or delaying the onset of encapsulation. Nanotechnology has the potential to address this problem by virtue of the ability of some nanomaterials to modulate interactions with cells, thereby inducing specific biological responses to implanted foreign materials. To this effect in the present study, we have characterised the growth of fibroblasts on nano-structured sheets constituted by BaTiO3, a material extensively used in biomedical applications. We found that sheets of vertically aligned BaTiO3 nanotubes inhibit cell cycle progression - without impairing cell viability - of NIH-3T3 fibroblast cells. We postulate that the 3D organization of the material surface acts by increasing the availability of adhesion sites, promoting cell attachment and inhibition of cell proliferation. This finding could be of relevance for biomedical applications designed to prevent or minimize fibrous encasement by uncontrolled proliferation of fibroblastic cells with loss of material-tissue interface underpinning long-term function of implants
    • 

    corecore