28,404 research outputs found

    Sheaf-Theoretic Stratification Learning from Geometric and Topological Perspectives

    Get PDF
    In this paper, we investigate a sheaf-theoretic interpretation of stratification learning from geometric and topological perspectives. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (2012), and the cohomology stratification algorithm given in Nanda (2017). Additionally, we give examples of stratifications based on the geometric techniques of Breiding et al. (2018), illustrating how the sheaf-theoretic approach can be used to study stratifications from both topological and geometric perspectives. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms

    A Novel A Priori Simulation Algorithm for Absorbing Receivers in Diffusion-Based Molecular Communication Systems

    Get PDF
    A novel a priori Monte Carlo (APMC) algorithm is proposed to accurately simulate the molecules absorbed at spherical receiver(s) with low computational complexity in diffusion-based molecular communication (MC) systems. It is demonstrated that the APMC algorithm achieves high simulation efficiency since by using this algorithm, the fraction of molecules absorbed for a relatively large time step length precisely matches the analytical result. Therefore, the APMC algorithm overcomes the shortcoming of the existing refined Monte Carlo (RMC) algorithm which enables accurate simulation for a relatively small time step length only. Moreover, for the RMC algorithm, an expression is proposed to quickly predict the simulation accuracy as a function of the time step length and system parameters, which facilitates the choice of simulation time step for a given system. Furthermore, a rejection threshold is proposed for both the RMC and APMC algorithms to significantly save computational complexity while causing an extremely small loss in accuracy.Comment: 11 pages, 14 figures, submitted to IEEE Transactions on NanoBioscience. arXiv admin note: text overlap with arXiv:1803.0463

    Topological Paramagnetism in Frustrated Spin-One Mott Insulators

    Get PDF
    Time reversal protected three dimensional (3D) topological paramagnets are magnetic analogs of the celebrated 3D topological insulators. Such paramagnets have a bulk gap, no exotic bulk excitations, but non-trivial surface states protected by symmetry. We propose that frustrated spin-1 quantum magnets are a natural setting for realising such states in 3D. We describe a physical picture of the ground state wavefunction for such a spin-1 topological paramagnet in terms of loops of fluctuating Haldane chains with non-trivial linking phases. We illustrate some aspects of such loop gases with simple exactly solvable models. We also show how 3D topological paramagnets can be very naturally accessed within a slave particle description of a spin-1 magnet. Specifically we construct slave particle mean field states which are naturally driven into the topological paramagnet upon including fluctuations. We propose bulk projected wave functions for the topological paramagnet based on this slave particle description. An alternate slave particle construction leads to a stable U(1) quantum spin liquid from which a topological paramagnet may be accessed by condensing the emergent magnetic monopole excitation of the spin liquid.Comment: 16 pages, 5 figure

    Parametric Local Metric Learning for Nearest Neighbor Classification

    Full text link
    We study the problem of learning local metrics for nearest neighbor classification. Most previous works on local metric learning learn a number of local unrelated metrics. While this "independence" approach delivers an increased flexibility its downside is the considerable risk of overfitting. We present a new parametric local metric learning method in which we learn a smooth metric matrix function over the data manifold. Using an approximation error bound of the metric matrix function we learn local metrics as linear combinations of basis metrics defined on anchor points over different regions of the instance space. We constrain the metric matrix function by imposing on the linear combinations manifold regularization which makes the learned metric matrix function vary smoothly along the geodesics of the data manifold. Our metric learning method has excellent performance both in terms of predictive power and scalability. We experimented with several large-scale classification problems, tens of thousands of instances, and compared it with several state of the art metric learning methods, both global and local, as well as to SVM with automatic kernel selection, all of which it outperforms in a significant manner

    Multigraded regularity: coarsenings and resolutions

    Get PDF
    Let S = k[x_1,...,x_n] be a Z^r-graded ring with deg (x_i) = a_i \in Z^r for each i and suppose that M is a finitely generated Z^r-graded S-module. In this paper we describe how to find finite subsets of Z^r containing the multidegrees of the minimal multigraded syzygies of M. To find such a set, we first coarsen the grading of M so that we can view M as a Z-graded S-module. We use a generalized notion of Castelnuovo-Mumford regularity, which was introduced by D. Maclagan and G. Smith, to associate to M a number which we call the regularity number of M. The minimal degrees of the multigraded minimal syzygies are bounded in terms of this invariant.Comment: 20 pages, 1 figure; small corrections made; final version; to appear in J. of Algebr
    • …
    corecore