661,955 research outputs found
Some recent advances in ab initio calculations of nonradiative decay rates of point defects in semiconductors
In this short review, we discuss a few recent advances in calculating the nonradiative decay rates for point defects in semiconductors. We briefly review the debates and connections of using different formalisms to calculate the multi-phonon processes. We connect Dr. Huang's formula with Marcus theory formula in the high temperature limit, and point out that Huang's formula provide an analytical expression for the phonon induced electron coupling constant in the Marcus theory formula. We also discussed the validity of 1D formula in dealing with the electron transition processes, and practical ways to correct the anharmonic effects
Asimov's Coming Back
Ever since the word ‘ROBOT’ first appeared in a science\ud
fiction in 1921, scientists and engineers have been trying\ud
different ways to create it. Present technologies in\ud
mechanical and electrical engineering makes it possible\ud
to have robots in such places as industrial manufacturing\ud
and assembling lines. Although they are\ud
essentially robotic arms or similarly driven by electrical\ud
power and signal control, they could be treated the\ud
primitive pioneers in application. Researches in the\ud
laboratories go much further. Interdisciplines are\ud
directing the evolution of more advanced robots. Among these are artificial\ud
intelligence, computational neuroscience, mathematics and robotics. These disciplines\ud
come closer as more complex problems emerge.\ud
From a robot’s point of view, three basic abilities are needed. They are thinking\ud
and memory, sensory perceptions, control and behaving. These are capabilities we\ud
human beings have to adapt ourselves to the environment. Although\ud
researches on robots, especially on intelligent thinking, progress slowly, a revolution\ud
for biological inspired robotics is spreading out in the laboratories all over the world
Genetic iterative search-centre-shifting K-best sphere detection for rank-deficient SDM-OFDM systems
A generic sphere-detection (SD) scheme is proposed, which substantially reduces the detection complexity by decomposing it into two stages, namely the generic iterative search-centre-update phase and the reduced-complexity search around it. This two-stage philosophy circumvents the high complexity of channel-coded soft-decision aided SDs
Control of DFIG based wind generation systems under unbalanced network supply
This paper develops a dynamic model and control scheme for DFIG systems to improve the performance and stability under unbalanced grid conditions. A dynamic DFIG model containing the positive and negative sequence components is presented using stator voltage orientation. The proposed model accurately illustrates the active power, reactive power and torque oscillations, and provides a basis for DFIG control system design during unbalanced network supply. Various control targets such as eliminating the oscillations of the torque, active/reactive power are discussed and the required rotor negative sequence current for fulfilling different control targets are described. Performance of a DFIG-based wind turbine under unbalanced condition using the proposed control method is evaluated by simulation studies using Matlab/Simulink. The proposed control scheme significantly attenuates the DFIG torque or active power oscillations during network unbalance whereas significant torque/power oscillations exist with the conventional control schemes
- …
