87 research outputs found

    Synchronous and subsynchronous vibration under the combined effect of bearings and seals: numerical simulation and its experimental validation

    Get PDF
    A three-dimensional computational fluid dynamics (CFD) model of a labyrinth seal was established in order to investigate the influence mechanism of combined effects between bearings and labyrinth seals on the dynamic characteristics of the rotor-bearing-seal system. The dynamic coefficients of the labyrinth seal for various rotating speeds were calculated. Results show that the absolute values of cross-coupled coefficients increase with the increasing rotating speed, while the absolute values of direct coefficients decrease slightly. The positive preswirl at the inlet tends to intensify the increase of cross-coupled coefficients and the decrease of direct coefficients. The negative preswirl shows the opposite effect. A finite element model was further setup. Results show that the labyrinth seal has a large influence on the synchronous response of rotor in the resonant region due to its damping effect. For other speeds, it has a minor effect. The labyrinth seal may promote the instability of the rotor-bearing-seal system. The subsynchronous vibration increases significantly when the seal force is taken into account. The system stability can be generally enhanced by introducing the negative preswirl at the inlet. Results also show that the detrimental influence of the labyrinth seal can be compensated by using suitable bearings. A proper bearing configuration can be designed to reduce the risks of rotordynamic instabilities due to seals. An experimental test was finally performed, and it shows good agreements with the numerical simulation

    Identification of Topping Responsive Proteins in Tobacco Roots

    Get PDF
    Tobacco plant has many responses to topping, such as the increase in ability of nicotine synthesis and secondary growth of roots. Some topping responsive miRNAs and genes had been identified in our previous work, but it is not enough to elaborate mechanism of tobacco response to topping. Here, topping responsive proteins were screened from tobacco roots with two-dimensional electrophoresis. Of these proteins, calretulin (CRT) and Auxin-responsive protein IAA9 were related to the secondary growth of roots, LRR disease resistance, heat shock protein 70 and farnesyl pyrophosphate synthase 1(FPPS)were involved in wounding stress response, and F-box protein played an important role in promoting the ability of nicotine synthesis after topping. In addition, there were five tobacco bHLH proteins (NtbHLH, NtMYC1a, NtMYC1b, NtMYC2a and NtMYC2b) related to nicotine synthesis. It was suggested that NtMYC2 might be the main positive transcription factor and NtbHLH protein is a negative regulator in the JA-mediating activation of nicotine synthesis after topping. Tobacco topping activates some comprehensive biology processes involving IAA and JA signaling pathway, and the identification of these proteins will be helpful to understand the process of topping response

    Influence of tilting rotor on characteristics of fluid-induced vibration for labyrinth seals

    Get PDF
    Labyrinth seal is a key component for the safe and reliable operation of a turbine unit. This paper sets up a three-dimensional numerical model of a labyrinth seal with a tilting rotor based on a compressor eye seal which was studied by Computational Fluid Dynamics method and a test labyrinth seal. The influence of the tilting rotor on the static and dynamic characteristics of labyrinth seals was investigated. Numerical results demonstrated a good agreement with the published article. Both the radial and tangential fluid-induced forces show an obvious increase when the rotor is in tilting conditions. From an efficiency viewpoint, a bigger tilt angle of the rotor is desirable. And eccentricity existence is not beneficial to the seal performance. The results based on the test seal show the whirl frequency ratio increases with the increasing eccentricity ratio. In case of tilting conditions (δ= 0.05 mm, θ= 0.8 deg), the whirl frequency ratio decreases with the increasing rotational speed. The higher rotational speed will be beneficial to the stability improvement when the rotor is in tilting conditions. The whirl frequency ratio also shows a decrease with the increasing inlet pressure. The higher inlet pressure tends to improve the stability when the rotor is in tilting conditions. All the stiffness coefficients and damping coefficients increase as the tilt angle increases. The whirl frequency ratio also shows an increase with the increasing tilt angle. The tilting rotor tends to reduce the stability when the rotor is in eccentric conditions

    STUDY ON ANTI-EHRLICH ASCITES TUMOUR EFFECT OF PINELLIA TERNATA POLYSACCHARIDE IN VIVO

    Get PDF
    The objectives of the study were to investigate the anti-tumour activity of Pinellia ternata polysaccharide in vivo, and to preliminarily explore the possible mechanism of its antitumour action. Mouse model of Ehrlich ascites tumour (solid tumour) was used to detect the serum SOD, MDA and GSH-Px levels in mouse and to measure the tumour inhibition rate and survival prolongation rate. The results showed that Pinellia ternata polysaccharide had some tumour inhibitory effect. Tumour weight of Pinellia ternata polysaccharide high-dose group was highly significantly different (

    Synchronous and subsynchronous vibration under the combined effect of bearings and seals: numerical simulation and its experimental validation

    Get PDF
    A three-dimensional computational fluid dynamics (CFD) model of a labyrinth seal was established in order to investigate the influence mechanism of combined effects between bearings and labyrinth seals on the dynamic characteristics of the rotor-bearing-seal system. The dynamic coefficients of the labyrinth seal for various rotating speeds were calculated. Results show that the absolute values of cross-coupled coefficients increase with the increasing rotating speed, while the absolute values of direct coefficients decrease slightly. The positive preswirl at the inlet tends to intensify the increase of cross-coupled coefficients and the decrease of direct coefficients. The negative preswirl shows the opposite effect. A finite element model was further setup. Results show that the labyrinth seal has a large influence on the synchronous response of rotor in the resonant region due to its damping effect. For other speeds, it has a minor effect. The labyrinth seal may promote the instability of the rotor-bearing-seal system. The subsynchronous vibration increases significantly when the seal force is taken into account. The system stability can be generally enhanced by introducing the negative preswirl at the inlet. Results also show that the detrimental influence of the labyrinth seal can be compensated by using suitable bearings. A proper bearing configuration can be designed to reduce the risks of rotordynamic instabilities due to seals. An experimental test was finally performed, and it shows good agreements with the numerical simulation

    Plant Phenotypic Traits Eventually Shape Its Microbiota: A Common Garden Test

    Get PDF
    Plant genotype drives the development of plant phenotypes and the assembly of plant microbiota. The potential influence of the plant phenotypic characters on its microbiota is not well characterized and the co-occurrence interrelations for specific microbial taxa and plant phenotypic characters are poorly understood. We established a common garden experiment, which quantifies prokaryotic and fungal communities in the phyllosphere and rhizosphere of six spruce (Picea spp.) tree species, through Illumina amplicon sequencing. We tested for relationships between bacterial/archaeal and fungal communities and for the phenotypic characters of their plant hosts. Host phenotypic characters including leaf length, leaf water content, leaf water storage capacity, leaf dry mass per area, leaf nitrogen content, leaf phosphorous content, leaf potassium content, leaf δ13C values, stomatal conductance, net photosynthetic rate, intercellular carbon dioxide concentration, and transpiration rate were significantly correlated with the diversity and composition of the bacterial/archaeal and fungal communities. These correlations between plant microbiota and suites of host plant phenotypic characters suggest that plant genotype shape its microbiota by driving the development of plant phenotypes. This will advance our understanding of plant-microbe associations and the drivers of variation in plant and ecosystem function

    Audit mode change, corporate governance

    Get PDF
    This study investigates changes in audit strategy in China following the introduction of risk-based auditing standards rather than an internal control-based audit mode. Specifically, we examine whether auditors are implementing the risk-based audit mode to evaluate corporate governance before distributing audit resources. The results show that under the internal control-based audit mode, the relationship between audit effort and corporate governance was weak. However, implementation of the risk-based mode required by the new auditing standards has significantly enhanced the relationship between audit effort and corporate governance. Since the change in audit mode, the Big Ten have demonstrated a significantly better grasp of governance risk and allocated their audit effort accordingly, relative to smaller firms. The empirical evidence indicates that auditors have adjusted their audit strategy to meet the regulations, risk-based auditing is being achieved to a degree, reasonable and effective corporate governance helps to optimize audit resource allocation, and smaller auditing firms in particular should urgently strengthen their risk-based auditing capability. Overall, our findings imply that the mandatory switch to risk-based auditing has optimized audit effort in China

    Hydrogen production technology by electrolysis of water and its application in renewable energy consumption

    No full text
    In order to deal with the energy crisis and environmental pollution, renewable energy power generation in the world has been rapid development. At present, the most widely used is solar energy and wind energy, but also caused a serious problem of abandoning light and wind. Hydrogen energy has become an ideal carrier of electric energy storage due to its high efficiency, clean and renewable characteristics. Electrolytic water hydrogen production technology with renewable energy as power source is one of the most promising energy conversion methods. This paper briefly analyzes the current situation of power generation and consumption of renewable energy in China in recent years, and then expounds the characteristics, principles, development status and improvement methods of alkaline, proton exchange membrane and high temperature solid oxide electrolytic water hydrogen production technology, and demonstrates its application prospect in the field of renewable energy power generation and energy storage with examples
    • …
    corecore