6 research outputs found
Performance of mNGS in bronchoalveolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis in non-neutropenic patients
The diagnosis of invasive pulmonary aspergillosis (IPA) diseases in non-neutropenic patients remains challenging. It is essential to develop optimal non-invasive or minimally invasive detection methods for the rapid and reliable diagnosis of IPA. Metagenomic next-generation sequencing (mNGS) in bronchoalveolar lavage fluid (BALF) can be a valuable tool for identifying the microorganism. Our study aims to evaluate the performance of mNGS in BALF in suspected IPA patients and compare it with other detection tests, including serum/BALF galactomannan antigen (GM) and traditional microbiological tests (BALF fungal culture and smear and lung biopsy histopathology). Ninety-four patients with suspicion of IPA were finally enrolled in our study. Thirty-nine patients were diagnosed with IPA, and 55 patients were non-IPA. There was significance between the IPA and non-IPA groups, such as BALF GM (P < 0.001), history of glucocorticoid use (P = 0.004), and pulmonary comorbidities (P = 0.002), as well as no significance of the other demographic data including age, sex, BMI, history of cigarette, blood GM assay, T-SPOT.TB, and NEUT#/LYMPH#. The sensitivity of the BALF mNGS was 92.31%, which was higher than that of the traditional tests or the GM assays. The specificity of BALF mNGS was 92.73%, which was relatively similar to that of the traditional tests. The AUC of BALF mNGS was 0.925, which presented an excellent performance compared with other traditional tests or GM assays. Our study demonstrated the important role of BALF detection by the mNGS platform for pathogen identification in IPA patients with non-neutropenic states, which may provide an optimal way to diagnose suspected IPA disease
Engineering Clostridium acetobutylicum for alcohol production
While Clostridium acetobutylicum has been used for large-scale butanol production (ABE fermentation), its by-product acetone cannot be used as a biofuel. In this study, C. acetobutylicum was engineered for alcohol titers (butanol plus ethanol). The adc gene was inactivated to eliminate acetone production, and glutathione biosynthetic capability was introduced into C. acetobutylicum to improve the strain's robustness by expressing Escherichia coli's gshAB genes in the adc locus. Acetone production was reduced from 2.64 +/- 0.22 g/L to 0.15 +/- 0.08 g/L in the engineered strain 824adc::gsh, whereas butanol production was increased from 5.17 +/- 0.26 g/L to 8.27 +/- 0.27 g/L. To further improve the alcohol titers, the metabolic flux in the alcohol biosynthesis pathways was enhanced. Overlapping PCR was used to generate expression cassette EC, which expresses the hbd, thl, crt, and bcd genes, and the Sol operon was amplified to express the adhE and ctfAB genes. Butanol and alcohol production reached 14.86 +/- 0.26 g/L and 18.11 +/- 0.66 g/L, respectively, in 824adc:: gsh Sol-EC. Furthermore, the butanol and alcohol yields were 0.336 g/g and 0.409 g/g, respectively, in 824adc:: gsh Sol-EC. This study provided a combined strategy for enhancing alcohol production in C. acetobutylicum. (C) 2013 Elsevier B.V. All rights reserved