12 research outputs found

    Immunology of multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) leading to demyelination, axonal damage, and progressive neurologic disability. The development of MS is influenced by environmental factors, particularly the Epstein-Barr virus (EBV), and genetic factors, which include specific HLA types, particularly DRB1*1501-DQA1*0102-DQB1*0602, and a predisposition to autoimmunity in general. MS patients have increased circulating T-cell and antibody reactivity to myelin proteins and gangliosides. It is proposed that the role of EBV is to infect autoreactive B cells that then seed the CNS and promote the survival of autoreactive T cells there. It is also proposed that the clinical attacks of relapsing-remitting MS are orchestrated by myelin-reactive T cells entering the white matter of the CNS from the blood, and that the progressive disability in primary and secondary progressive MS is caused by the action of autoantibodies produced in the CNS by ­meningeal lymphoid follicles with germinal centers

    Susac-Syndrom: Eine interdisziplinaere Herausforderung [Susac syndrome: an interdisciplinary challenge]

    No full text
    Susac syndrome, named after John Susac, the first to describe this condition, is characterized by the clinical triad of encephalopathy, branch retinal artery occlusion, and sensorineural hearing loss. Although certainly a rare disease, Susac syndrome needs to be considered in the differential diagnosis of a broad variety of diseases. The pathogenesis is not yet clear. Autoimmune processes leading to damage and inflammation-related occlusion of the microvessels in brain, retina, and inner ear are thought to play a causal role. The diagnosis is based primarily on the clinical presentation, the documentation of branch retinal artery occlusion by fluorescence angiography, and characteristic findings on cerebral MRI. Usually, immunosuppressive therapy is required, though controlled therapy trials are missing so far. The intention of this review article is to raise awareness of this disease among neurologists, psychiatrists, ophthalmologists, and ENT specialists as a high number of unreported cases probably exists. Accordingly, the focus is on the clinical presentation and the diagnostic approach

    MR spectroscopy (MRS) and magnetisation transfer imaging (MTI), lesion load and clinical scores in early relapsing remitting multiple sclerosis: a combined cross-sectional and longitudinal study

    No full text
    The purpose of this study was to correlate magnetic resonance imaging (MRI)-based lesion load assessment with clinical disability in early relapsing remitting multiple sclerosis (RRMS). Seventeen untreated patients (ten women, seven men; mean age 33.0 +/- 7.9 years) with the initial diagnosis of RRMS were included for cross-sectional as well as longitudinal (24 months) clinical and MRI-based assessment in comparison with age-matched healthy controls. Conventional MR sequences, MR spectroscopy (MRS) and magnetisation transfer imaging (MTI) were performed at 1.5 T. Lesion number and volume, MRS and MTI measurements for lesions and normal appearing white matter (NAWM) were correlated to clinical scores [Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite (MSFC)] for monitoring disease course after treatment initiation (interferon beta-1a). MTI and MRS detected changes [magnetisation transfer ratio (MTR), N-acetylaspartate (NAA)/creatine ratio] in NAWM over time. EDSS and lesional MTR increases correlated throughout the disease course. Average MTR of NAWM raised during the study (p < 0.05) and correlated to the MSFC score (r = 0.476, p < 0.001). At study termination, NAA/creatine ratio of NAWM correlated to the MSFC score (p < 0.05). MTI and MRS were useful for initial disease assessment in NAWM. MTI and MRS correlated with clinical scores, indicating potential for monitoring the disease course and gaining new insights into treatment-related effects

    Beyond the limbic system: disruption and functional compensation of large-scale brain networks in patients with anti-LGI1 encephalitis

    No full text
    OBJECTIVE: Hippocampal inflammation in anti-LGI1 encephalitis causes memory deficits, seizures and behavioural abnormalities. Recent findings suggest that extralimbic brain areas are additionally affected and that patients also suffer from non-limbic cognitive symptoms. Moreover, up to 60% of patients show no structural MRI abnormalities in the acute disease stage. We therefore investigated whether functional connectivity analyses can identify brain network changes underlying disease-related symptoms. METHODS: We studied 27 patients and a matched healthy control group using structural and functional MRI. Intrinsic functional networks were analysed using Independent Component Analysis and Dual Regression. Cognitive testing covered working memory, episodic memory, attention and executive function. RESULTS: Our analysis revealed functional connectivity alterations in several large-scale networks, including the default mode network (DMN) which showed an aberrant structure-function relationship with the damaged hippocampus. In addition, connectivity in the sensorimotor, salience and higher visual networks was impaired independent of hippocampal damage. Increased connectivity in ventral and dorsal DMN regions significantly correlated with better memory performance. In contrast, stronger connectivity of the insula with the salience network and DMN was linked to impaired memory function. CONCLUSIONS: Anti-LGI1 encephalitis is associated with a characteristic pattern of widespread functional network alterations. Increased DMN connectivity seems to represent a compensatory mechanism for memory impairment induced by hippocampal damage. Network analyses may provide a key to the understanding of clinical symptoms in autoimmune encephalitis and reveal changes of brain function beyond apparent structural damage

    Dysregulated Epstein-Barr virus infection in patients with CIDP

    Full text link
    Ubiquitous viruses have frequently been proposed as a cause or trigger of chronic immune-mediated diseases. Infections are reported to be temporally associated with clinical exacerbations in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). We examined immunological parameters of herpesvirus infections in untreated patients with CIDP compared to demographically matched controls. Patients with CIDP were uniformly seropositive for EBV-specific IgG and the disease was associated with a moderately enhanced IgG reactivity to EBV-encoded antigens expressed during both B cell transformation and productive viral replication. Moreover, cellular EBV copy numbers were 3-fold increased in patients with CIDP. In contrast, humoral immune responses to other herpesviruses (HCMV, HSV) as well as virus-specific IgM responses were unchanged in CIDP. These data indicate that host-pathogen interactions during chronic EBV infection are dysregulated in treatment-naĂŻve patients with CIDP

    Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures

    No full text
    Background: Neuromyelitis optica (NMO, Devic disease) is a severely disabling autoimmune disorder of the CNS, which was considered a subtype of multiple sclerosis (MS) for many decades. Recently, however, highly specific serum autoantibodies (termed NMO-IgG or AQP4-Ab) have been discovered in a subset (60–80%) of patients with NMO. These antibodies were subsequently shown to be directly involved in the pathogenesis of the condition. AQP4-Ab positive NMO is now considered an immunopathogenetically distinct disease in its own right. However, to date little is known about the cerebrospinal fluid (CSF) in AQP4-Ab positive NMO. Objective: To describe systematically the CSF profile of AQP4-Ab positive patients with NMO or its formes frustes, longitudinally extensive myelitis and optic neuritis. Material and methods: Cytological and protein biochemical results from 211 lumbar punctures in 89 AQP4-Ab positive patients of mostly Caucasian origin with neuromyelitis optica spectrum disorders (NMOSD) were analysed retrospectively. Results: CSF-restricted oligoclonal IgG bands, a hallmark of MS, were absent in most patients. If present, intrathecal IgG (and, more rarely, IgM) synthesis was low, transient, and, importantly, restricted to acute relapses. CSF pleocytosis was present in around 50% of samples, was mainly mild (median, 19 cells/μl; range 6–380), and frequently included neutrophils, eosinophils, activated lymphocytes, and/or plasma cells. Albumin CSF/serum ratios, total protein and CSF L-lactate levels correlated significantly with disease activity as well as with the length of the spinal cord lesions in patients with acute myelitis. CSF findings differed significantly between patients with acute myelitis and patients with acute optic neuritis at the time of LP. Pleocytosis and blood CSF barrier dysfunction were also present during remission in some patients, possibly indicating sustained subclinical disease activity. Conclusion: AQP4-Ab positive NMOSD is characterized by CSF features that are distinct from those in MS. Our findings are important for the differential diagnosis of MS and NMOSD and add to our understanding of the immunopathogenesis of this devastating condition

    Frequency and syndrome specificity of antibodies to aquaporin-4 in neurological patients with rheumatic disorders

    No full text
    BACKGROUND: A new autoantibody (termed NMO-IgG, or AQP4-Ab) has recently been described in patients with neuromyelitis optica (NMO) and its formes frustes, longitudinally extensive transverse myelitis (LETM) and recurrent optic neuritis (rON). However, AQP4-Ab has been found also in patients with co-existing rheumatic diseases such as systemic lupus erythematosus (SLE) or Sjogren's syndrome (SS), conditions which are characterized by broad, polyspecific B cell activation. OBJECTIVES: In this study, we aimed at evaluating the syndrome specificity and frequency of AQP4-Ab in patients with rheumatic diseases and neurological symptoms. METHODS: For this purpose, serum samples from 109 neurological patients with established connective tissue disorders (CTD) (n = 54), possible CTD (n = 42), or vasculitis (n = 13) were analysed for the presence of AQP4-Ab by a cell-based assay employing recombinant human AQP4. RESULTS: AQP4-Ab was detectable in 31/40 (78%) patients with CTD and NMO spectrum disorders (median titre, 1:1000) but in none of the samples obtained from patients with CTD or vasculitis and neurological disorders other than NMO, LETM, or rON (n = 69). CONCLUSION: The high syndrome specificity of the antibody for neuromyelitis optica spectrum disorders (NMOSDs) in patients with CTD supports the concept of AQP4-Ab being involved in the pathogenesis of these neurological conditions, and argues against AQP4-Ab simply being part of the polyclonal B cell activation generally associated with rheumatic diseases. Moreover, the finding that AQP4-Ab is present in patients with CTD and co-existing NMOSD with approximately the same frequency as in patients without CTD strengthens the case of CTD and AQP4-Ab positive NMOSD representing two co-existing yet distinct entities in the majority of patients

    IgA NMDA receptor antibodies are markers of synaptic immunity in slow cognitive impairment

    No full text
    Objective: To report that antibodies to synaptic proteins may occur in association with slow, progressive cognitive decline. Methods: A total of 24 patients with progressive cognitive dysfunction of unclear etiology were examined for onconeuronal and synaptic receptor antibodies. The effect of serum was examined in cultures of dissociated mouse hippocampal neurons. Results: Seven patients had immunoglobulin A (IgA), but no immunoglobulin G (IgG), antibodies against NMDA receptor (NMDAR). Anti-NMDAR IgA positive patients' serum, but not serum from control individuals, caused dramatic decrease of the levels of NMDAR and other synaptic proteins in neurons, along with prominent changes in NMDAR-mediated currents. These effects correlated with the titer of IgA NMDAR antibodies and were reversed after removing patients' serum from the culture media. When available, comprehensive clinical assessment and brain metabolic imaging showed neurologic improvement after immunotherapy. Conclusions: A subset of patients with slowly progressive cognitive impairment has an underlying synaptic autoimmunity that decreases the density of NMDAR and other synaptic proteins, and alters synaptic currents. This autoimmunity can be demonstrated examining patients' serum and CSF for NMDAR IgA antibodies, identifying possible candidates for immunotherapy
    corecore