65 research outputs found

    Tars: Timeliness-aware Adaptive Replica Selection for Key-Value Stores

    Full text link
    In current large-scale distributed key-value stores, a single end-user request may lead to key-value access across tens or hundreds of servers. The tail latency of these key-value accesses is crucial to the user experience and greatly impacts the revenue. To cut the tail latency, it is crucial for clients to choose the fastest replica server as much as possible for the service of each key-value access. Aware of the challenges on the time varying performance across servers and the herd behaviors, an adaptive replica selection scheme C3 is proposed recently. In C3, feedback from individual servers is brought into replica ranking to reflect the time-varying performance of servers, and the distributed rate control and backpressure mechanism is invented. Despite of C3's good performance, we reveal the timeliness issue of C3, which has large impacts on both the replica ranking and the rate control, and propose the Tars (timeliness-aware adaptive replica selection) scheme. Following the same framework as C3, Tars improves the replica ranking by taking the timeliness of the feedback information into consideration, as well as revises the rate control of C3. Simulation results confirm that Tars outperforms C3.Comment: 10pages,submitted to ICDCS 201

    Improvement of Quantitative Evaluation of Rock Brittleness Based on Stress-Strain Curve

    Get PDF
    Accurate assessment of brittle of rock is the key to the transformation of oil and gas reservoirs. In view of this, Therefore, through literature research, summarized more than 30 kinds of  brittleness index, and analysis the limitations of the brittleness evaluation index. A new brittle evaluation index, based on the stress characteristics of the stress-strain curve, and considering the two kinds of rock breaking behavior, is proposed. And carry out uniaxial compression test to verify the evaluation index of brittleness. The test results show that the new brittle index can evaluate the two kinds of rock brittleness, which is more general and reliable than other indexes. The results have important significance to enrich and improve the existing evaluation methods of rock brittleness

    OmniAvatar: Geometry-Guided Controllable 3D Head Synthesis

    Full text link
    We present OmniAvatar, a novel geometry-guided 3D head synthesis model trained from in-the-wild unstructured images that is capable of synthesizing diverse identity-preserved 3D heads with compelling dynamic details under full disentangled control over camera poses, facial expressions, head shapes, articulated neck and jaw poses. To achieve such high level of disentangled control, we first explicitly define a novel semantic signed distance function (SDF) around a head geometry (FLAME) conditioned on the control parameters. This semantic SDF allows us to build a differentiable volumetric correspondence map from the observation space to a disentangled canonical space from all the control parameters. We then leverage the 3D-aware GAN framework (EG3D) to synthesize detailed shape and appearance of 3D full heads in the canonical space, followed by a volume rendering step guided by the volumetric correspondence map to output into the observation space. To ensure the control accuracy on the synthesized head shapes and expressions, we introduce a geometry prior loss to conform to head SDF and a control loss to conform to the expression code. Further, we enhance the temporal realism with dynamic details conditioned upon varying expressions and joint poses. Our model can synthesize more preferable identity-preserved 3D heads with compelling dynamic details compared to the state-of-the-art methods both qualitatively and quantitatively. We also provide an ablation study to justify many of our system design choices

    Potential Game Based Distributed IoV Service Offloading With Graph Attention Networks in Mobile Edge Computing

    Get PDF
    Vehicular services aim to provide smart and timely services (e.g., collision warning) by taking the advantage of recent advances in artificial intelligence and employing task offloading techniques in mobile edge computing. In practice, the volume of vehicles in the Internet of Vehicles (IoV) often surges at a single location and renders the edge servers (ESs) severely overloaded, resulting in a very high delay in delivering the services. Therefore, it is of practical importance and urgency to coordinate the resources of ESs with bandwidth allocation for mitigating the occurrence of a spike traffic flow. For this challenge, existing work sought the periodicities of traffic flow by analyzing historical traffic data. However, the changes in traffic flow caused by sudden traffic conditions cannot be obtained from these periodicities. In this paper, we propose a distributed traffic flow forecasting and task offloading approach named TFFTO to optimize the execution time and power consumption in service processing. Specifically, graph attention networks (GATs) are leveraged to forecast future traffic flow in short-term and the traffic volume is utilized to estimate the number of services offloaded to the ESs in the subsequent period. With the estimate, the current load of the ESs is adjusted to ensure that the services can be handled in a timely manner. Potential game theory is adopted to determine the optimal service offloading strategy. Extensive experiments are conducted to evaluate our approach and the results validate our robust performance

    Blood glucose level affects prognosis of patients who received intravenous thrombolysis after acute ischemic stroke? A meta-analysis

    Get PDF
    Background and objectivesIntravenous recombinant tissue plasminogen activator (rtPA) thrombolysis is an effective treatment for acute ischemic stroke. Hyperglycemia is a major risk factor for the occurrence, development, and prognosis of ischemic stroke. This meta-analysis purposefully estimates the association between hyperglycemia and poor prognosis in acute ischemic stroke patients receiving intravenous rtPA thrombolytic therapy.Materials and methodsAccording to the predefined inclusion criteria, we searched PubMed, Web of Science, and Cochrane Library databases. The association of high blood glucose(>140mg/dl) with symptomatic intracranial hemorrhage (sICH), poor clinical outcome and mortality at 90 days post-rtPA thrombolysis was studied using both a common effects model and a random effects model. Odds ratios (ORs) were plotted on forest plots.ResultsOf a total cohort of 2565 patients who received intravenous thrombolytic therapy, 721 had higher blood glucose. High glucose level significantly increased the odds of sICH (OR 1.80; 95% confidence interval(95%CI): 1.30- 2.50) and poor clinical outcome at 90 days (OR 1.82; 95%CI: 1.52-2.19), and all-cause mortality at 90 days (OR 2.51; 95%CI:1.65-3.82).ConclusionsIn our meta-analysis, high blood glucose was significantly associated with sICH, poor clinical outcome and higher mortality at 90 days

    Investigating the Spatiotemporal Variability and Driving Factors of Artificial Lighting in the Beijing-Tianjin-Hebei Region Using Remote Sensing Imagery and Socioeconomic Data

    No full text
    With rapid urbanization and economic development, artificial lighting at night brings convenience to human life but also causes a considerable urban environmental pollution issue. This study employed the Mann-Kendall non-parametric test, nighttime light indices, and the standard deviation method to investigate the spatio-temporal characteristics of artificial lighting in the Beijing-Tianjin-Hebei region. Moreover, nighttime light imagery from the Defense Meteorological Satellite Program Operational Linescan System, socioeconomic data, and high-resolution satellite images were combined to comprehensively explore the driving factors of urban artificial lighting change. The results showed the following: (1) Overall, there was an increasing trend in artificial lighting in the Beijing-Tianjin-Hebei region, which accounted for approximately 56.87% of the total study area. (2) The change in artificial lighting in the entire area was relatively stable. The artificial lighting in the northwest area changed faster than that in the southeast area, and the areas where artificial lighting changed the most were Beijing, Tianjin and Tangshan. (3) The fastest growth of artificial lighting was in Chengde and Zhangjiakou, where the rates of increase were 334% and 251%, respectively. The spatial heterogeneity of artificial lighting in economically developed cities was higher than that in economically underdeveloped cities such as Chengde and Zhangjiakou. (4) Multi-source data were combined to analyse the driving factors of urban artificial lighting in the entire area. The Average Population of Districts under City (R2 = 0.77) had the strongest effect on artificial lighting. Total Passenger Traffic (R2 = 0.54) had the most non-obvious effect. At different city levels, driving factors varied with differences of economy, geographical location, and the industrial structures of cities. Urban expansion, transportation hubs, and industries were the major reasons for the significant change in nighttime light. Urban artificial lighting represents a trend of overuse closely related to nighttime light pollution. This study of artificial lighting contributes to the rational planning of urban lighting systems, the prevention and control of nighttime light pollution, and the creation of liveable and ecologically green cities

    Analysis of backward congestion notification with delay for enhanced Ethernet networks

    Full text link
    Abstract—Recently, companies and standards organizations are enhancing Ethernet as the unified switch fabric for all of the TCP/IP traffic, the storage traffic and the interprocess communication(IPC) traffic in Data Center Networks(DCNs). Backward Congestion Notification(BCN) is the basic mechanism for the end-to-end congestion management enhancement. To fulfill the special requirements of the unified switch fabric that being lossless and of extremely low latency, BCN should hold the queue length around a target point tightly. Thus, the stability of the control loop and the buffer size are critical to BCN. Currently, the impacts of delay on the performance of BCN are unidentified. When the link capacity increases to 40Gbps or 100Gbps in the near future, the number of on-the-fly packets becomes the same order with the shallow buffer size of switches. Thus, the impacts of delay on the performance of BCN will become significant. In this paper, we analyze BCN, paying special attention on the delay. Firstly, we model the BCN system with a set of segmented delayed differential equations. Then, the sufficient condition for the uniformly asymptotic stability of the BCN system is deduced. Subsequently, the bound of buffer occupancy under this sufficient condition are estimated, which provides guidelines on setting buffer size. Finally, the numerical analysis and the experiments on the NetFPGA platform verify the theoretical analysis
    • …
    corecore