142 research outputs found

    EFFECT OF CENTELLA ASIATICA POWDER (CAP) AND MANGOSTEEN PEEL POWDER (MPP) ON RUMEN FERMENTATION AND MICROBIAL POPULATION IN SWAMP BUFFALOES

    Get PDF
    ABSTRCT Four, rumen-fistulated swamp buffalo bulls were randomly assigned to receive dietary treatments according to a 4x4 Latin square design. Four treatments were as follows; un-supplementation (control); supplementation with Centella asiatica powder (CAP) at 25 g/kg; supplementation with Mangosteen peel power (MPP) at 25 g/kg; CAP at 25 g/kg and MPP at 25 g/kg (CAMP) of total dry matter intake (DMI). Animals were fed with concentrate at 30 g/kg BW. Rice straw, water and mineral salt block were offered ad libitum. The experiment was conducted for 4 periods, and each period lasted for 21 days, while the last 7 days was for sample collection. The results revealed that the proportion of ruminal acetic acid was decreased whereas propionic acid increased (P<0.05) by supplementation as compared to control group. Similarly, methane emission was lesser (P<0.05) in the CAP and CAMP as compared to control group. While, ruminal protozoal population was dramatically decreased (P<0.05) with the CAP and MPP supplementation; whilst, the CAMP treatment had a higher (P<0.05) fungal zoospore population when compared to the control group. Moreover, community of DNA was extracted from 0.5 g of rumen fluid and digesta by the repeated bead beating plus column (RBB+C) method, Real-time PCR amplification and detection were performed in a Chromo 4™ system (Bio-Rad, USA), the use of real-time PCR technique provided the data that the population of protozoa was reduced (p<0.05) by CAMP supplementation; whereas instead, the population of F. succinogenes were increased (p<0.05) by the CAP and CAMP supplementation. Dietary supplementation had no effect on total bacterial population, and R. flavefaciens, R. albus. In conclusion, CAP or MPP supplementation improved rumen fermentation by positively affecting the ruminal microbial population in swamp buffaloes fed on rice straw

    Effect of a high forage: Concentrate ratio on milk yield, blood parameters and oxidative status in lactating cows

    Get PDF
    A feeding strategy that requires a forage: concentrate ratio equal to 70: 30, with at least five different herbs in the forage and the use of silages prohibited, has recently been introduced in Italy. Despite the benefits in terms of human health (lower ω6: ω3 ratio, higher conjugated linoleic acid level) of the obtained milk, little information regarding the possible effects on cows' health is available. The aim of this study was to evaluate the effects of such a feeding strategy in dairy cows (90 days in milk at the beginning of the trial) on milk yield and composition, and blood metabolic profile, including the evaluation of oxidative stress. The proposed feeding strategy, compared with a semi-intensive strategy, resulted in an improvement of animal oxidative status (lower levels of reactive oxygen metabolites, higher levels of antioxidant potential and anti-reactive oxygen metabolites) and a significant increase of milk urea only in the first part of the trial. No differences in milk yield and composition were detected throughout the trial

    Problems in feeding and nutrition of lactating ruminants in Asia

    Get PDF

    Review : Alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects

    Get PDF
    Ruminant-based food production faces currently multiple challenges such as environmental emissions, climate change and accelerating food-feed-fuel competition for arable land. Therefore, more sustainable feed production is needed together with the exploitation of novel resources. In addition to numerous food industry (milling, sugar, starch, alcohol or plant oil) side streams already in use, new ones such as vegetable and fruit residues are explored, but their conservation is challenging and production often seasonal. In the temperate zones, lipid-rich camelina (Camelina sativa) expeller as an example of oilseed by-products has potential to enrich ruminant milk and meat fat with bioactive trans-11 18:1 and cis-9,trans-11 18:2 fatty acids and mitigate methane emissions. Regardless of the lower methionine content of alternative grain legume protein relative to soya bean meal (Glycine max), the lactation performance or the growth of ruminants fed faba beans (Vicia faba), peas (Pisum sativum) and lupins (Lupinus sp.) are comparable. Wood is the most abundant carbohydrate worldwide, but agroforestry approaches in ruminant nutrition are not common in the temperate areas. Untreated wood is poorly utilised by ruminants because of linkages between cellulose and lignin, but the utilisability can be improved by various processing methods. In the tropics, the leaves of fodder trees and shrubs (e.g. cassava (Manihot esculenta), Leucaena sp., Flemingia sp.) are good protein supplements for ruminants. A food-feed production system integrates the leaves and the by-products of on-farm food production to grass production in ruminant feeding. It can improve animal performance sustainably at smallholder farms. For larger-scale animal production, detoxified jatropha (Jatropha sp.) meal is a noteworthy alternative protein source. Globally, the advantages of single-cell protein (bacteria, yeast, fungi, microalgae) and aquatic biomass (seaweed, duckweed) over land crops are the independence of production from arable land and weather. The chemical composition of these feeds varies widely depending on the species and growth conditions. Microalgae have shown good potential both as lipid (e.g. Schizochytrium sp.) and protein supplements (e.g. Spirulina platensis) for ruminants. To conclude, various novel or underexploited feeds have potential to replace or supplement the traditional crops in ruminant rations. In the short-term, N-fixing grain legumes, oilseeds such as camelina and increased use of food and/or fuel industry by-products have the greatest potential to replace or supplement the traditional crops especially in the temperate zones. In the long-term, microalgae and duckweed of high-yield potential as well as wood industry by-products may become economically competitive feed options worldwide.Peer reviewe

    Effect of Grape Pomace Powder, Mangosteen Peel Powder and Monensin on Nutrient Digestibility, Rumen Fermentation, Nitrogen Balance and Microbial Protein Synthesis in Dairy Steers

    Get PDF
    This study was designed to investigate the effect of grape pomace powder (GPP), mangosteen peel powder (MPP) and monensin on feed intake, nutrients digestibility, microorganisms, rumen fermentation characteristic, microbial protein synthesis and nitrogen balance in dairy steers. Four, rumen fistulated dairy steers with initial body weight (BW) of 220±15 kg were randomly assigned according to a 4×4 Latin square design to receive four treatments. The treatments were as follows: T1 = control, T2 = supplementation with monensin at 33 mg/kg diet, T3 = supplementation with GPP at 2% of dry matter intake, and T4 = supplementation with MPP at 30 g/kg diet. The steers were offered the concentrate diet at 0.2% BW and 3% urea treated rice straw (UTRS) was fed ad libitum. It was found that GPP supplemented group had higher UTRS intake and nutrient digestibility in terms of neutral detergent fiber and acid detergent fiber than those in control group (p<0.05). Ammonia nitrogen (NH3-N) and blood urea-nitrogen concentration were higher in monensin, GPP and MPP supplemented groups (p<0.05). Total volatile fatty acids and propionate in the GPP group were higher than those in the control group (p<0.05) while acetate concentration, and acetate to propionate ratio were decreased (p<0.01) when steers were supplemented with GPP, monensin, and MPP, respectively. Moreover, protozoal populations in GPP, MPP, and monensin supplementation were significantly lower than those in the control group (p<0.05), while cellulolytic bacterial population was significantly higher in the control group (p<0.05). Nitrogen retention, microbial crude protein and efficiency of microbial nitrogen synthesis were found significantly higher in steers that received GPP (p<0.05). Based on this study it could be concluded that the GPP has potential as an alternative feed supplement in concentrate diets which can result in improved rumen fermentation efficiency, digestibility and microbial protein synthesis in steers fed on treated rice straw

    Influence of dietary hydrogenated palm oil supplementation on serum biochemistry and progesterone levels in dairy goats

    Get PDF
    The aim of this research was to investigate the influence of hydrogenated palm oil (HPO) added to a dairy goat diet on serum biochemistry and progesterone levels. Thirty pregnant Cilentana dairy goats were equally divided into 2 groups (control [CTR] and HPO groups). After kidding, concentrated feed for both groups was gradually increased up to 400 g/(animald),andtheHPOgroupreceived50g/(animald), and the HPO group received 50 g/(animald) of HPO. Supplementation with HPO significantly increased cholesterol levels (mg/dL, 63.80 vs. 54.68 at 30 d, P 0.05; 78.20 vs. 58.00 at 60 d, P 0.05; 83.80 vs. 57.83 at 120 d, P 0.01) compared with the CTR group although no significant differences were detected for liver and kidney function indicators. Moreover, other biochemical parameters were not affected by HPO supplementation thus suggesting no change occurred in lipid and protein metabolism. Furthermore, a significant correlation was found be- tween progesterone levels and serum cholesterol (r 1⁄4 0.65, P 0.01) although these were not signifi- cantly higher in HPO supplemented goats. The dose and time of HPO supplementation appears critical as regards assessing the limits between the risks and benefits of HPO supplementation in dairy goats. At the tested dose, HPO was well tolerated by the animals and may represent a useful tool to increase energy availability during highly demanding periods

    Changes of Microbial Population in the Rumen of Dairy Steers as Influenced by Plant Containing Tannins and Saponins and Roughage to Concentrate Ratio

    Get PDF
    The objective of this study was to investigate microbial population in the rumen of dairy steers as influenced by supplementing with dietary condensed tannins and saponins and different roughage to concentrate ratios. Four, rumen fistulated dairy steers (Bos indicus) were used in a 2×2 factorial arrangement in a 4×4 Latin square design. The main factors were two roughage to concentrate ratios (R:C, 60:40 and 40:60) and two supplementations of rain tree pod meal (RPM) (0 and 60 g/kg of total DM intake). Chopped 30 g/kg urea treated rice straw was used as a roughage source. All animals received feed according to respective R:C ratios at 25 g/kg body weight. The RPM contained crude tannins and saponins at 84 and 143 g/kg of DM, respectively. It was found that ruminal pH decreased while ruminal temperature increased by a higher concentrate ratio (R:C 40:60) (p<0.05). In contrast, total bacterial, Ruminococus albus and viable proteolytic bacteria were not affected by dietary supplementation. Numbers of fungi, cellulolytic bacteria, Fibrobactor succinogenes and Ruminococus flavefaciens were higher while amylolytic bacteria was lower when steers were fed at 400 g/kg of concentrate. The population of Fibrobactor succinogenes, was found to be higher with RPM supplementation. In addition, the use of real-time PCR technique indicated that the population of protozoa and methanogens were decreased (p<0.05) with supplementation of RPM and with an increasing concentrate ratio. Supplementation of RPM and feeding different concentrate ratios resulted in changing the rumen microbes especially, when the animals were fed at 600 g/kg of concentrate and supplemented with RPM which significantly reduced the protozoa and methanogens population

    Effect of Plants Containing Secondary Compounds with Palm Oil on Feed Intake, Digestibility, Microbial Protein Synthesis and Microbial Population in Dairy Cows

    Get PDF
    The objective of this study was to determine the effect of rain tree pod meal with palm oil supplementation on feed intake, digestibility, microbial protein synthesis and microbial populations in dairy cows. Four, multiparous early-lactation Holstein-Friesian crossbred (75%) lactating dairy cows with an initial body weight (BW) of 405±40 kg and 36±8 DIM were randomly assigned to receive dietary treatments according to a 4×4 Latin square design. The four dietary treatments were un-supplementation (control), supplementation with rain tree pod meal (RPM) at 60 g/kg, supplementation with palm oil (PO) at 20 g/kg, and supplementation with RPM at 60 g/kg and PO at 20 g/kg (RPO), of total dry matter intake. The cows were offered concentrates, at a ratio of concentrate to milk production of 1:2, and chopped 30 g/kg of urea treated rice straw was fed ad libitum. The RPM contained condensed tannins and crude saponins at 88 and 141 g/kg of DM, respectively. It was found that supplementation with RPM and/or PO to dairy cows diets did not show negative effects on feed intake and ruminal pH and BUN at any times of sampling (p>0.05). However, RPM supplementation resulted in lower crude protein digestibility, NH3-N concentration and number of proteolytic bacteria. It resulted in greater allantoin absorption and microbial crude protein (p<0.05). In addition, dairy cows showed a higher efficiency of microbial N supply (EMNS) in both RPM and RPO treatments. Moreover, NDF digestibility and cellulolytic bacteria numbers were highest in RPO supplementation (p<0.05) while, supplementation with RPM and/or PO decreased the protozoa population in dairy cows. Based on this study, supplementation with RPM and/or PO in diets could improve fiber digestibility, microbial protein synthesis in terms of quantity and efficiency and microbial populations in dairy cows

    Effects of Linseed Supplementation on Milk Production, Composition, Odd-and Branched-Chain Fatty Acids, and on Serum Biochemistry in Cilentana Grazing Goats

    Get PDF
    The purpose of this study was to investigate the effects of linseed supplementation on milk yield and quality, serum biochemistry and, in particular, to evaluate its possible effects on the production of odd-and branched-chain fatty acids (OBCFA) in the milk of Cilentana grazing goats. Twelve pregnant Cilentana dairy goats were divided into two groups (CTR, control, and LIN, linseed supplementation group). After kidding, the goats had free access to the pasture and both groups received a supplement of 400 g/head of concentrate, but the one administered to the LIN group was characterized by the addition of linseed (in a ratio of 20% as fed) to the ingredients. During the trial, milk samples were taken from April to August in order to evaluate milk production, composition, and fatty acid profile. In addition, blood samples were taken for evaluating the effects of linseed supplementation on goats’ health status. The health status of the goats was not influenced by the linseed supplementation, as confirmed by blood analyses. Concerning the effects on milk, the supplementation positively affected (p < 0.001) milk production and fat percentage and the fatty acid profile was markedly influenced by the lipid supplementation. In particular, milk from the LIN group was characterized by significantly lower concentrations of saturated fatty acids (FA; p < 0.001) and higher proportions of monounsaturated FA, polyunsaturated FA, and conjugated linoleic acids (CLAs) than milk from the CTR group (p < 0.001). In contrast, the OBCFA were negatively influenced by the linseed supplementation (p < 0.0001). Further studies are needed to test the effects of different fat sources and other nutrients on the diets
    corecore