268 research outputs found

    Cold r-Process in Neutrino-Driven Winds

    Full text link
    The r-process in a low temperature environment is explored, in which the neutron emission by photodisintegration does not play a role (cold r-process). A semi-analytic neutrino-driven wind model is utilized for this purpose. The temperature in a supersonically expanding outflow can quickly drop to a few 10^8 K, where the (n, gamma)-(gamma, n) equilibrium is never achieved during the heavy r-nuclei synthesis. In addition, the neutron capture competes with the beta-decay owing to the low matter density. Despite such non-standard physical conditions for the cold r-process, a solar-like r-process abundance curve can be reproduced. The cold r-process predicts, however, the low lead production compared to that expected in the traditional r-process conditions, which can be a possible explanation for the low lead abundances found in a couple of r-process-rich Galactic halo stars.Comment: 5 pages, 3 figures, accepted for publication in ApJ

    The rp-Process in Core-collapse Supernovae

    Get PDF

    R-process nucleosynthesis in a collapsar

    Get PDF

    Simulations of Electron Capture and Low-Mass Iron Core Supernovae

    Full text link
    The evolutionary pathways of core-collapse supernova progenitors at the low-mass end of the spectrum are beset with major uncertainties. In recent years, a variety of evolutionary channels has been discovered in addition to the classical electron capture supernova channel of super-AGB stars. The few available progenitor models at the low-mass end have been studied with great success in supernova simulations as the peculiar density structure makes for robust neutrino-driven explosions in this mass range. Detailed nucleosynthesis calculations have been conducted both for models of electron capture supernovae and low-mass iron core supernovae and revealed an interesting production of the lighter trans-iron elements (such as Zn, Sr, Y, Zr) as well as rare isotopes like Ca-48 and Fe-60. We stress the need to explore the low-mass end of the supernova spectrum further and link various observables to understand the diversity of explosions in this regime.Comment: 7 page, 3 figures, proceedings of the conference "The AGB-Supernova Mass Transition", to appear in Memorie della Societ\`a Astronomica Italian

    Explosive nucleosynthesis in core-collapse supernovae

    Full text link
    The specific mechanism and astrophysical site for the production of half of the elements heavier than iron via rapid neutron capture (r-process) remains to be found. In order to reproduce the abundances of the solar system and of the old halo stars, at least two components are required: the heavy r-process nuclei (A>130) and the weak r-process which correspond to the lighter heavy nuclei (A<130). In this work, we present nucleosynthesis studies based on trajectories of hydrodynamical simulations for core-collapse supernovae and their subsequent neutrino-driven winds. We show that the weak r-process elements can be produced in neutrino-driven winds and we relate their abundances to the neutrino emission from the nascent neutron star. Based on the latest hydrodynamical simulations, heavy r-process elements cannot be synthesized in the neutrino-driven winds. However, by artificially increasing the wind entropy, elements up to A=195 can be made. In this way one can mimic the general behavior of an ejecta where the r-process occurs. We use this to study the impact of the nuclear physics input (nuclear masses, neutron capture cross sections, and beta-delayed neutron emission) and of the long-time dynamical evolution on the final abundances.Comment: 10 pages, 8 figures, invited talk, INPC 2010 Vancouver, Journal of Physics: Conference Serie

    Enrichment of Strontium in Dwarf Galaxies

    Get PDF
    Light trans-iron elements such as Sr serve as the key to understanding the astrophysical sites of heavy elements. Spectroscopic studies of metal-poor stars have revealed large star-to-star scatters in the ratios of [Sr/Ba], which indicates that there are multiple sites for the production of Sr. Here we present the enrichment history of Sr by a series of the NN-body/smoothed particle hydrodynamics simulations of a dwarf galaxy with a stellar mass of 3 ×\times 106^{6} M⊙M_{\odot}. We show that binary neutron star mergers (NSMs) and asymptotic giant branch (AGB) stars contribute to the enrichment of Sr in the metallicity ranges [Fe/H] ≳\gtrsim −-3 and [Fe/H] ≳\gtrsim −-1, respectively. It appears insufficient, however, to explain the overall observational trends of Sr by considering only these sites. We find that the models including electron-capture supernovae (ECSNe) and rotating massive stars (RMSs), in addition to NSMs and AGBs, reasonably reproduce the enrichment histories of Sr in dwarf galaxies. The contributions of both ECSNe and NSMs make scatters of ≈\approx 0.2 dex in [Sr/Fe], [Sr/Ba], and [Sr/Zn] as can be seen for observed stars in the metallicity range [Fe/H] << −2-2. We also find that the mass range of ECSN progenitors should be substantially smaller than 1 M⊙1\, M_\odot (e.g., 0.1-0.2 M⊙0.2\, M_\odot) to avoid over-prediction of [Sr/Ba] and [Sr/Zn] ratios. Our results demonstrate that NSMs, AGBs, ECSNe, and RMSs all play roles in the enrichment histories of Local Group dwarf galaxies, although more observational data are required to disentangle the relative contributions of these sources
    • …
    corecore