1,402 research outputs found

    Ambra1 is an essential regulator of autophagy and apoptosis in SW620 cells: Pro-survival role of Ambra1

    Get PDF
    Recent research has revealed a role for Ambra1, an autophagy-related gene-related (ATG) protein, in the autophagic pro-survival response, and Ambra1 has been shown to regulate Beclin1 and Beclin1-dependent autophagy in embryonic stem cells. However, whether Ambra1 plays an important role in the autophagy pathway in colorectal cancer cells is unknown. In this study, we hypothesized that Ambra1 is an important regulator of autophagy and apoptosis in CRC cell lines. To test this hypothesis, we confirmed autophagic activity in serum-starved SW620 CRC cells by assessing endogenous microtubule-associated protein 1 light chain 3 (LC3) localization, the presence of autophagosomes (transmission electron microscopy) and LC3 protein levels (Western blotting). Ambra1 expression was detected by Western blot in SW620 cells treated with staurosporine or etoposide. Calpain and caspase inhibitors were employed to verify whether calpains and caspases were responsible for Ambra1 cleavage. To examine the role of Ambra1 in apoptosis, Ambra1 knockdown cells were treated with staurosporine and etoposide. Cell apoptosis and viability were measured by annexin-V and PI staining and MTT assays. We determined that serum deprivation-induced autophagy was associated with Ambra1 upregulation in colorectal cancer cell lines. Ambra1 expression decreased during staurosporine- or etoposide-induced apoptosis. Calpains and caspases may be responsible for Ambra1 degradation. When Ambra1 expression was reduced by siRNA, SW620 cells were more sensitive to staurosporine- or etoposide-induced apoptosis. In addition, starvation-induced autophagy decreased. Finally, Co-immunoprecipitation of Ambra1 and Beclin1 demonstrated that Ambra1 and Beclin1 interact in serum-starved or rapamycin-treated SW620 cells, suggesting that Ambra1 regulates autophagy in CRC cells by interacting with Beclin1. In conclusion, Ambra1 is a crucial regulator of autophagy and apoptosis in CRC cells that maintains the balance between autophagy and apoptosis

    Analysis of EGFR signaling pathway in nasopharyngeal carcinoma cells by quantitative phosphoproteomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epidermal growth factor receptor (EGFR) is usually overexpressed in nasopharyngeal carcinoma (NPC) and is associated with pathogenesis of NPC. However, the downstream signaling proteins of EGFR in NPC have not yet been completely understood at the system level. The aim of this study was identify novel downstream proteins of EGFR signaling pathway in NPC cells.</p> <p>Results</p> <p>We analyzed EGFR-regulated phosphoproteome in NPC CNE2 cells using 2D-DIGE and mass spectrometry analysis after phosphoprotein enrichment. As a result, 33 nonredundant phosphoproteins including five known EGFR-regulated proteins and twenty-eight novel EGFR-regulated proteins in CNE2 were identified, three differential phosphoproteins were selectively validated, and two differential phosphoproteins (GSTP1 and GRB2) were showed interacted with phospho-EGFR. Bioinformatics analysis showed that 32 of 33 identified proteins contain phosphorylation modification sites, and 17 identified proteins are signaling proteins. GSTP1, one of the EGFR-regulated proteins, associated with chemoresistance was analyzed. The results showed that GSTP1 could contribute to paclitaxel resistance in EGF-stimulated CNE2 cells. Furthermore, an EGFR signaling network based on the identified EGFR-regulated phosphoproteins were constructed using Pathway Studio 5.0 software, which includes canonical and novel EGFR-regulated proteins and implicates the possible biological roles for those proteins.</p> <p>Conclusion</p> <p>The data not only can extend our knowledge of canonical EGFR signaling, but also will be useful to understand the molecular mechanisms of EGFR in NPC pathogenesis and search therapeutic targets for NPC.</p

    Investigation of the Anti-Inflammatory Activity of Fusaproliferin Analogues Guided by Transcriptome Analysis

    Get PDF
    Background: Excessive inflammation results in severe tissue damage as well as serious acute or chronic disorders, and extensive research has focused on finding new anti-inflammatory hit compounds with safety and efficacy profiles from natural products. As promising therapeutic entities for the treatment of inflammation-related diseases, fusaproliferin and its analogs have attracted great interest. However, the underlying anti-inflammatory mechanism is still poorly understood and deserves to be further investigated.Methods: For the estimation of the anti-inflammatory activity of fusaproliferin (1) and its analogs (2-4)in vitro and in vivo, lipopolysaccharide (LPS)-induced RAW264.7 macrophages and zebrafish embryos were employed. Then, transcriptome analysis was applied to guide subsequent western blot analysis of critical proteins in related signaling pathways. Surface plasmon resonance assays (SPR) combined with molecular docking analyses were finally applied to evaluate the affinity interactions between 1-4 and TLR4 and provide a possible interpretation of the downregulation of related signaling pathways.Results: 1-4 significantly attenuated the production of inflammatory messengers, including nitric oxide (NO), reactive oxygen species (ROS), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), as well as nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in LPS-induced RAW264.7 macrophages. Transcriptome analyses based on RNA-seq indicated the ability of compound 1 to reverse LPS stimulation and the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPKs) signaling pathways contribute to the anti-inflammatory process. Experimental verification at the protein level revealed that 1 can inhibit the activation of inhibitor of NF-κB kinase (IKK), degradation of inhibitor of NF-κB (IκB), and phosphorylation of NF-κB and reduce nuclear translocation of NF-κB. 1 also decreased the phosphorylation of MAPKs, including p38, extracellular regulated protein kinases (ERK), and c-Jun N-terminal kinase (JNK). SPR assays and molecular docking results indicated that 1-4 exhibited affinity for the TLR4 protein with KD values of 23.5–29.3 μM.Conclusion: Fusaproliferin and its analogs can be hit compounds for the treatment of inflammation-associated diseases

    Plasma microRNA Profiles as a Potential Biomarker in Differentiating Adult-Onset Still's Disease From Sepsis

    Get PDF
    Adult-onset Still's disease (AOSD) is a systemic inflammatory disease characterized by cytokine storm. However, a diagnostic test for AOSD in clinical use is yet to be validated. The aim of our study was to identify non-invasive biomarkers with high specificity and sensitivity to diagnosis of AOSD. MicroRNA (miRNA) profiles in PBMC from new-onset AOSD patients without any treatment and healthy controls (HCs) were analyzed by miRNA deep sequencing. Plasma samples from 100 AOSD patients and 60 HCs were used to validated the expression levels of miRNA by qRT-PCR. The correlations between expression levels of miRNAs and clinical manifestations were analyzed using advanced statistical models. We found that plasma samples from AOSD patients showed a distinct miRNA expression profile. Five miRNAs (miR-142-5p, miR-101-3p, miR-29a-3p, miR-29c-3p, and miR-141-3p) were significantly upregulated in plasma of AOSD patients compared with HCs both in training and validation sets. We discovered a panel including 3 miRNAs (miR-142-5p, miR-101-3p, and miR-29a-3p) that can predict the probability of AOSD with an area under the receiver operating characteristic (ROC) curve of 0.8250 in training and validation sets. Moreover, the expression levels of 5 miRNAs were significantly higher in active AOSD patients compared with those in inactive patients. In addition, elevated level of miR-101-3p was found in AOSD patients with fever, sore throat and arthralgia symptoms; the miR-101-3p was also positively correlated with the levels of IL-6 and TNF-α in serum. Furthermore, five miRNAs (miR-142-5p, miR-101-3p, miR-29c-3p, miR-29a-3p, and miR-141-3p) expressed in plasma were significantly higher in AOSD patients than in sepsis patients (P &lt; 0.05). The AUC value of 4-miRNA panel (miR-142-5p, miR-101-3p, miR-29c-3p, and miR-141-3p) for AOSD diagnosis from sepsis was 0.8448, revealing the potentially diagnostic value to distinguish AOSD patients from sepsis patients. Our results have identified a specific plasma miRNA signature that may serve as a potential non-invasive biomarker for diagnosis of AOSD and monitoring disease activity

    Lower Extremity Peripheral Arterial Disease Is an Independent Predictor of Coronary Heart Disease and Stroke Risks in Patients with Type 2 Diabetes Mellitus in China

    Get PDF
    We aimed to determine the relationship between lower extremity peripheral arterial disease (PAD), 10-year coronary heart disease (CHD), and stroke risks in patients with type 2 diabetes (T2DM) using the UKPDS risk engine. We enrolled 1178 hospitalized T2DM patients. The patients were divided into a lower extremity PAD group (ankle-brachial index≤0.9 or >1.4; 88 patients, 7.5%) and a non-PAD group (ankle-brachial index>0.9 and ≤1.4; 1090 patients, 92.5%). Age; duration of diabetes; systolic blood pressure; the hypertension rate; the use of hypertension drugs, ACEI /ARB, and statins; CHD risk; fatal CHD risk; stroke risk; and fatal stroke risk were significantly higher in the PAD group than in the non-PAD group (P<0.05 for all). Logistic stepwise regression analysis indicated that ABI was an independent predictor of 10-year CHD and stroke risks in T2DM patients. Compared with those in the T2DM non-PAD group, the odds ratios (ORs) for CHD and stroke risk were 3.6 (95% confidence interval (CI), 2.2–6.0; P<0.001) and 6.9 (95% CI, 4.0–11.8; P<0.001) in those with lower extremity PAD, respectively. In conclusion, lower extremity PAD increased coronary heart disease and stroke risks in T2DM
    corecore