1,134 research outputs found

    On-chip, High-sensitivity Temperature Sensors Based on Dye-doped Solid-state Polymer Microring Lasers

    Get PDF
    We developed a chip-scale temperature sensor with a high sensitivity of 228.6 pm/°C based on a rhodamine 6G (R6G)-doped SU-8 whispering-gallery mode microring laser. The optical mode was largely distributed in a polymer core layer with a 30 Όm height that provided detection sensitivity, and the chemically robust fused-silica microring resonator host platform guaranteed its versatility for investigating different functional polymer materials with different refractive indices. As a proof of concept, a dye-doped hyperbranched polymer (TZ-001) microring laser-based temperature sensor was simultaneously developed on the same host wafer and characterized using a free-space optics measurement setup. Compared to TZ-001, the SU-8 polymer microring laser had a lower lasing threshold and a better photostability. The R6G-doped SU-8 polymer microring laser demonstrated greater adaptability as a high-performance temperature-sensing element. In addition to the sensitivity, the temperature resolutions for the laser-based sensors were also estimated to be 0.13 °C and 0.35 °C, respectively. The rapid and simple implementation of micrometer-sized temperature sensors that operate in the range of 31 – 43 °C enables their potential application in thermometry

    Chest computed tomography radiomics to predict the outcome for patients with COVID-19 at an early stage

    Get PDF
    PURPOSEEarly monitoring and intervention for patients with novel coronavirus disease-2019 (COVID-19) will benefit both patients and the medical system. Chest computed tomography (CT) radiomics provide more information regarding the prognosis of COVID-19.METHODSA total of 833 quantitative features of 157 COVID-19 patients in the hospital were extracted. By filtering unstable features using the least absolute shrinkage and selection operator algorithm, a radiomic signature was built to predict the prognosis of COVID-19 pneumonia. The main outcomes were the area under the curve (AUC) of the prediction models for death, clinical stage, and complications. Internal validation was performed using the bootstrapping validation technique.RESULTSThe AUC of each model demonstrated good predictive accuracy [death, 0.846; stage, 0.918; complication, 0.919; acute respiratory distress syndrome (ARDS), 0.852]. After finding the optimal cut-off for each outcome, the respective accuracy, sensitivity, and specificity were 0.854, 0.700, and 0.864 for the prediction of the death of COVID-19 patients; 0.814, 0.949, and 0.732 for the prediction of a higher stage of COVID-19; 0.846, 0.920, and 0.832 for the prediction of complications of COVID-19 patients; and 0.814, 0.818, and 0.814 for ARDS of COVID-19 patients. The AUCs after bootstrapping were 0.846 [95% confidence interval (CI): 0.844–0.848] for the death prediction model, 0.919 (95% CI: 0.917–0.922) for the stage prediction model, 0.919 (95% CI: 0.916–0.921) for the complication prediction model, and 0.853 (95% CI: 0.852–0.0.855) for the ARDS prediction model in the internal validation. Based on the decision curve analysis, the radiomics nomogram was clinically significant and useful.CONCLUSIONThe radiomic signature from the chest CT was significantly associated with the prognosis of COVID-19. A radiomic signature model achieved maximum accuracy in the prognosis prediction. Although our results provide vital insights into the prognosis of COVID-19, they need to be verified by large samples in multiple centers

    Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure

    Get PDF
    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq(3) organic layer in an Au-Alq(3)-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq(3) thickness and can be tuned within the Alq(3) fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Obvious changes in the Commission Internationale d’Eclairage (CIE) coordinates and the corresponding emission colors of Au-Alq(3)-Au samples clearly varied with the Alq(3) thickness (90, 130, and 156 nm)

    Inhibiting Phase Transfer of Protein Nanoparticles by Surface Camouflage-A Versatile and Efficient Protein Encapsulation Strategy

    Get PDF
    Engineering a system with a high mass fraction of active ingredients, especially water-soluble proteins, is still an ongoing challenge. In this work, we developed a versatile surface camouflage strategy that can engineer systems with an ultrahigh mass fraction of proteins. By formulating protein molecules into nanoparticles, the demand of molecular modification was transformed into a surface camouflage of protein nanoparticles. Thanks to electrostatic attractions and van der Waals interactions, we camouflaged the surface of protein nanoparticles through the adsorption of carrier materials. The adsorption of carrier materials successfully inhibited the phase transfer of insulin, albumin, ÎČ-lactoglobulin, and ovalbumin nanoparticles. As a result, the obtained microcomposites featured with a record of protein encapsulation efficiencies near 100% and a record of protein mass fraction of 77%. After the encapsulation in microcomposites, the insulin revealed a hypoglycemic effect for at least 14 d with one single injection, while that of insulin solution was only ∌4 h.Peer reviewe

    A Model to Induce Low Temperature Trauma for in vitro Astrogliosis Study*

    Get PDF
    Astrogliosis is an inevitable and rapid response of astrocytes to physical, chemical and pathological injuries. To study astrogliosis, we developed a reproducible in vitro model in which low temperature injury to cultured astrocytes could be induced by placing the culture dish onto a copper pipe pre-cooled by liquid nitrogen. Using this model, the relationship between the temperature decline and the severity of cellular damage was analyzed. An increase in the expression of some known injury-related proteins, such as glial fibrillary acidic protein (GFAP), immediate early response genes (IEGs), and heat shock proteins 70 (HSP70), was demonstrated in astrocytes after low temperature trauma. With the use of this low temperature trauma model, the flexibility in the temperature control and injury area may allow researchers to evaluate cryotherapy and cryosurgery, which could be applicable to future development of quality health care

    Urinary levels of organophosphate flame retardants metabolites in a young population from Southern Taiwan and potential health effects

    Get PDF
    BackgroundOrganophosphate flame retardants (OPFRs) are widely distributed in the environment and their metabolites are observed in urine, but little is known regarding OPFRs in a broad-spectrum young population from newborns to those aged 18 years.ObjectivesInvestigate urinary levels of OPFRs and OPFR metabolites in Taiwanese infants, young children, schoolchildren, and adolescents within the general population.MethodsDifferent age groups of subjects (n=136) were recruited from southern Taiwan to detect 10 OPFR metabolites in urine samples. Associations between urinary OPFRs and their corresponding metabolites and potential health status were also examined.ResultsThe mean level of urinary ÎŁ10 OPFR in this broad-spectrum young population is 2.25 ÎŒg/L (standard deviation (SD) of 1.91 ÎŒg/L). ÎŁ10 OPFR metabolites in urine are 3.25 ± 2.84, 3.06 ± 2.21, 1.75 ± 1.10, and 2.32 ± 2.29 ÎŒg/L in the age groups comprising of newborns, 1-5 year-olds, 6-10 year-olds, and 11-18 year-olds, respectively, and borderline significant differences were found in the different age groups (p=0.125). The OPFR metabolites of TCEP, BCEP, DPHP, TBEP, DBEP, and BDCPP predominate in urine and comprise more than 90% of the total. TBEP was highly correlated with DBEP in this population (r=0.845, p<0.001). The estimated daily intake (EDI) of ÎŁ5OPFRs (TDCPP, TCEP, TBEP, TNBP, and TPHP) was 2,230, 461, 130, and 184 ng/kg bw/day for newborns, 1-5 yr children, 6-10 yr children, and 11-17 yr adolescents, respectively. The EDI of ÎŁ5OPFRs for newborns was 4.83-17.2 times higher than the other age groups. Urinary OPFR metabolites are significantly correlated with birth length and chest circumference in newborns.ConclusionTo our knowledge, this is the first investigation of urinary OPFR metabolite levels in a broad-spectrum young population. There tended to be higher exposure rates in both newborns and pre-schoolers, though little is known about their exposure levels or factors leading to exposure in the young population. Further studies should clarify the exposure levels and factor relationships

    Roadmap on spatiotemporal light fields

    Full text link
    Spatiotemporal sculpturing of light pulse with ultimately sophisticated structures represents the holy grail of the human everlasting pursue of ultrafast information transmission and processing as well as ultra-intense energy concentration and extraction. It also holds the key to unlock new extraordinary fundamental physical effects. Traditionally, spatiotemporal light pulses are always treated as spatiotemporally separable wave packet as solution of the Maxwell's equations. In the past decade, however, more generalized forms of spatiotemporally nonseparable solution started to emerge with growing importance for their striking physical effects. This roadmap intends to highlight the recent advances in the creation and control of increasingly complex spatiotemporally sculptured pulses, from spatiotemporally separable to complex nonseparable states, with diverse geometric and topological structures, presenting a bird's eye viewpoint on the zoology of spatiotemporal light fields and the outlook of future trends and open challenges.Comment: This is the version of the article before peer review or editing, as submitted by an author to Journal of Optics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    • 

    corecore