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Abstract

We developed a chip-scale temperature sensor with a high sensitivity of 228.6 pm/°C
based on a rhodamine 6G (R6G)-doped SU-8 whispering gallery mode microring
laser. The optical mode was largely distributed in a polymer core layer with a 30 pm
height that provided detection sensitivity, and the chemicallyZ ust fused-silica
microring resonator host platform guaranteed its versatility f i%:%ﬂhg different

functional polymer materials with different refractive indices« As

roof of concept, a
dye-doped hyperbranched polymer (TZ-001) micr in‘g)laser— sed temperature
sensor was simultaneously developed on the same hostiwa “;E characterized using
a free-space optics measurement setup. Cozfire to T)—OOI, the SU-8 polymer

microring laser had a lower lasing thresheld arrcb a better photostability. The

R6G-doped SU-8 polymer microring laser oftstrated greater adaptability as a
high-performance temperature-sensing\e{

temperature resolutions for the laser- %sors were also estimated to be 0.13 °C

t."In addition to the sensitivity, the

and 0.35 °C, respectively. The ra })nckmmple implementation of micrometer-sized
temperature sensors that opg\ in the range of 31-43 °C enables their potential

application in thermome%
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Main text

Sensitive temperature sensing is a significant driving force behind the development of
thermometry technologies in a variety of important fields, such as in biological
treatments' and medical diagnosis.2’3 A suitable biocompatible temperature sensor at
the micro- and nanoscale could determine the effects of temperaturesrelated metabolic
activities on living cells. Recently, different nanothermé rs based on
temperature-dependent ~ optical  properties, such as avmminescent
nanothermometer composed of polymer-encapsulated quan (P-QD),* a green
fluorescent probe based on NaYF4Er'",Yb®" nanoparti€les;) and“a, thermoresponsive
poly(N-isopropylacrylamide) (pNIPAM)-coated optieal mietofibe % were employed to
detect environmental temperatures at cellular levgls in She temperature range of

human organs of 35-42 °C. However, mostfof the temperature sensors mentioned

above have low sensitivities and are difficultito mo@“ for on-chip integration, which

is typically used for multifunctional bio% nitoring and treatment. Therefore,

development of chip-scale integra dMer ¢ sensors with high sensitivities is
highly desirable. %

Given their unique chaﬁ%cizh that include easy integration, rapid response

N radiation,”” passive optical whispering gallery

mode (WGM) resonators with high Q-factors and small mode volumes have attracted

time, and immunity to elgctro

significant attentigh as ‘egmmon sensing units in the past decade. In general, these

resonator geometries ‘eould be fabricated on chips using different host materials,
including X{Iico ) silica,'""* and polymer". The spectral position of the WGM
resona ﬁ}b\ted by the thermal-optic (TO) and thermal expansion (TE) effects of

the sresonator materials and surrounding environment, which has been extensively

ex 1éd gpr temperature sensing applications.'*™'® For instance, because of the
compatibility with CMOS fabrication processes, silicon-based temperature sensors are
p ed due to their excellent thermal conductivity (~149 W/(m-K)).""° However,

tbe sensitivity of a pure silicon ring resonator-based temperature sensor is limited to

\ “ approximately 80 pm/°C due to the low TO coefficient of silicon (~1.8 x 10 K").*'#

Silica is another material that is commonly used to fabricate ring resonators, but silica

has an even lower TO coefficient (~1 x 10° K')** and temperature sensitivity. To

3
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improve the sensitivity, a silica ring resonator was recently coated with a layer of
polydimethylsiloxane, and a sensitivity of 151 pm/°C was achieved.” In nearly all
passive WGM resonator-based temperature sensors, the resonance probing and
readout are realized using an optical fiber taper, a waveguide, or a prism, which not

. . . . 2627
cumbersome and susceptible to mechanical vibrations.™

only requires sub-micrometer precision positioning but also ma wtire device
)

For an active resonator-based temperature sensor, the_measurement setup is
simpler because free-space optics can be employe to‘)obe e WGM spectral
position. Furthermore, gain media can reduce the speetral i :v:;dth and improve the
detection limit of an active resonator-based temperatuge sel&or.zg’29 To this end, in our
work, an organic dye R6G-doped polymer Was\jleposited as a gain medium on

Sl(\&
the fused-silica microring resonator h stkﬁsfo'fabricate an SU-8 laser-based

temperature sensor. To demonstrate twr ility of our microring resonator host
platform, the R6G-doped hyperbrm%&@ymer TZ-001° was deposited as another
gain material on the same wafer me.a&e a TZ-001 laser-based temperature sensor
with different temperature-% ent, characteristics. In the experiments, different
optical properties, inclu \ﬁhg spectral characteristics, lasing thresholds and
photostability of th-$(>\1?/mer microring lasers, were separately characterized and

compared to estimateithe feasibility of their use as temperature sensing elements.

The solid-state po/b/mer microring laser-based temperature sensor used in this

work consistediof a fused-silica microring resonator host with a channel profile as a

cla Qer and a cured R6G-doped polymer gain material deposited on it as a core

1 illustrates the top and cross-sectional views of the active WGMs
resonatorbased temperature sensor. Figure 2(a) depicts the scanning electron

'cro)cope (SEM) image of an etched fused-silica microring resonator host prior to
p}lymer deposition. The detailed fabrication processes were presented in our previous
work.*" The fabrication methods of the solid-state polymer core layer are displayed in
Fig. 2(b) to 2(d). A free-space optics measurement system is provided in Fig. 3

(details are shown in supplementary material).

4
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Figure 4(a) depicts the lasing spectral characteristics of an R6G-doped SU-8
solid-state polymer microring laser. The full width at half maximum (FWHM) of the
lasing peak at approximately 597.567 nm was measured to be 0.034 nm, which was

limited by the spectrometer’s spectral resolution (~0.03 nm). Using the equation for
the Q-factor of a passive resonator (Q = 7»/A7»),32 the correspondé{ﬁ:tor for this

R6G-doped polymer microring laser was estimated to be .%X 10°. We have

previously measured the (-factor of a passive ring.resopatorsfrom the same

.}qa,@itlon, we have also

fabrication batch® and observed a comparable O-fac

at fill the entire ring

measured laser emissions from various fluidic gain media

resonator host®* and recorded a comparable lgser lin . Therefore, we conclude

there was no noticeable additional scatteringlo oriéalated from the gain film in our
L

current device. The free spectrum range (FSR)y was measured to be 0.3 nm, the

refractive index of the SU-8 was estimatedito be 1.6, which corresponds to the radius
of the microring laser of approximately kl15.4 um, suggesting that the scattered lasing
signals came mainly from e.iniﬁ\ihoring resonator. The thickness of the SU-8
polymer can be further e@e 5.4 pm.

Bt
t

To further investigate easibility of an R6G-doped SU-8 polymer microring
laser as a hi -p@(}jance temperature sensor, the lasing threshold and
photostability fof t/he lymer laser were characterized. The lasing threshold was
determinegzto be 2% pJ/mm?, as shown in Fig. 5(a). The laser photostability was
investi atej undet_an intermittent pump mechanism. Figure 6(a) illustrates that the
lasifig spectra were obtained under a pump intensity of 75.7 pJ/mm?’, which is

Vi

ima,’gely 60 times the lasing threshold. These lasing spectra were collected over

ten mSasu ements with a 30 second interval between adjacent measurements, and they
indieate that the SU-8 polymer microring laser had good photostability. Detailed

s);dies in Fig. 6(b) using the lasing peak at 589.12 nm as the spectral marker

\ % exhibited a total spectral shift of less than 0.011 nm even under an extremely high

pump intensity.
Temperature sensing by the R6G-doped solid-state polymer microring laser was

5
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achieved by measuring the lasing peak shift that resulted from the TO and TE effects
of the resonator materials, as explained in Eq. (1):

dn,,
dr=p| L8 LD Ge g
ng, dI DdT

where D is the diameter of the polymer microring resonator and@e effective
d
dT

o L 1
refractive index of the polymer microring resonator. dn,; /d n) — ——denote the
‘ D

TO coefficient and the TE coefficient of the resonato(\:{Npectlvely During
d

the experiment, the hot plate temperature was chag_e\K m 31%°C to 43 °C, which
to 4

covers the physiological temperature range of 35 5

7(a), a 0.92 nm blue-shift in the lasing pea&vas observed when the temperature

As illustrated in Fig.

-

increased from 39 °C to 43 °C, which 1Spainly fattributed to the negative TO

coefficient of the polymer SU-8 (~-3. ' K')** because the TE coefficient of the

solid SU-8 material (~10° K™)* is compared to the TO coefficient.

By linearly fitting the exper 1
was determined to be O.2&nS C ?laig. 7(b)). Compared to the previous ring
resonator-based temper@,”l%% the sensor reported in this work has a
higher temperature sensitivity “while avoiding the use of cumbersome and delicate
fiber taper or wawveguide‘\coupling (see Table SI in supplementary material). The
sensitivity o Qxﬁ)er re sensor in our work was significantly enhanced because

/ de di

the optic

, the sensitivity of the temperature sensor

ibution was largely confined in the approximately 30 pum height
of the(SU-8 core layer of the polymer microring resonator. Compared to the passive
silicon /rin esonator-based temperature sensor reported by Kim et al.,'” the SU-8
pely m(croring laser-based temperature sensor was three times more sensitive and

its linbwidth was twice as narrow. Theoretically, the temperature resolution could be

—
K:S)proved to 6 times that of the silicon resonator (i.e., ~1.67 x 10™ °C). However, in

R

ractice, due to the limitation of the spectrometer resolution, the detection limit of this
temperature sensor was estimated to be approximately 0.13 °C. The realization of the
SU-8 polymer microring laser-based temperature sensor with a micrometer-sized

footprint thereby demonstrates its capability for high-sensitivity temperature sensing.
6
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As a significant advantage, the chemical robustness of the fused-silica resonator
host platform guarantees its versatility with functional polymer materials with
different refractive indices. In the design and fabrication of miniaturized polymer
resonator devices, optical polymer materials with high refractive indices are always
selected to create a large contrast in the refractive index. Th{ one reason we
employed polymer TZ-001, which has a high refractive index of q&k@ain carrier.
Furthermore, as a hyperbranched polymer, the studies in th %\Kould advance the
knowledge of the physical and mechanical properties of TZ-001.

Figure 4(b) depicts the lasing spectral charactéristics ::R6G-doped TZ-001
polymer microring laser. The FWHM is similar to that of Sb-S, but the FSR is smaller

-

due to the higher refractive index of TZ-00 asedyon the FSR, the radius of the
R6G-doped TZ-001 polymer microring scix\esﬁmmed to be 110.5 pm, indicating
that the TZ-001 layer (0.5 pm) was siNa thinner than SU-8 as a result of the
need to deposit the brittle TZ-001 %‘higher spin-speed than SU-8 to avoid
potential cracks that may occur d hlmy—speed deposition.

Similarly, the lasing thres w measured to be 9.28 pJ/mm? (Fig. 5(b)), which
suggests that the TZ-001 M microring laser had a lower Q-factor than SU-8.
This was mainly m-ib)ﬁd to the large scattering loss resulting from the brittle

TZ-001 core lager polymer. The photostability of the lasing spectra was observed at

different tinde 1 {vals/under a pump intensity of 140 pJ/mm?” (Fig. 6(c)). Figure 6(d)

indicates that “a,redshift of approximately 0.02 nm occurred from 0 s to 270 s time

inte )nis might be caused by photobleaching resulting from the large pump

ﬁotost ili .
Fizure 8(a) indicates that the lasing peak blue-shifted by 0.182 nm upon

—
&&reasing the temperature from 39 °C to 41 °C. The sensitivity of the temperature

\J

<« sensor was determined to be 0.0858 nm/°C by linear fitting (Fig. 8(b)). This value was

nearly one-third the sensitivity of SU-8 (see Table SI). The temperature resolution was

estimated to be 0.35 °C. For TZ-001, the above experimental results demonstrated its

7
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low TO coefficient (physical property) and the versatility of our chip-scale sensing
platform.

In our work, a high-sensitivity temperature sensor based on an R6G-doped SU-8
WGMs polymer microring laser has been developed, and its properties were
characterized by a simple free-space optics measurement setup. demonstrate the

versatility of our sensing platform and to further under an-d) ysical and

mechanical properties of thehyperbranched TZ-001 polymﬁ&doped TZ-001 as

an alternative core layer material was chosen for de@ition n the microring
S

resonator host wafer. Based on the experimentdl results, the R6G-doped SU-8
polymer microring laser had a lower lasing. thr oldSand better photostability
compared to TZ-001, which illustrates the capiiity‘oithe R6G-doped SU-8 polymer
microring laser to act as a high-performance s in'g'element. Lastly, the sensitivities
of the temperature sensors of both p(:%groring lasers in the range 31-43 °C
were determined to be 228.6 pm/°C a \83'.8"p-m/°C, respectively, and the temperature
resolutions were estimated as, 0.1 })@0.35 °C, respectively.

Several advanced featurg\ ed%on these proof-of-concept temperature sensors

are worthy of further %%&QOH and development. First, we will incorporate

encapsulation lay, rs-ﬂxcreate highly photostable optofluidic microring laser

temperature seAsor </ In)addition, we will incorporate highly reliable photonic

Waveguid?/\vvl

of this sensor with liquid environments is demonstrated in our future work, the rapid

zf/ higydegree of freedom on the same chip.”* Once the compatibility

Dimplementation of these polymer-coated temperature sensors will further

expand' their ‘adaptability in temperature sensing applications, particularly in cellular

thermo iry.

5 See supplementary material for the fabrication methods of polymer microring

S <« lasers and the description of free-space optics measurement setup.
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SE 'male of an etched fused-silica microring resonator host with a
h?\T;l’e 1dth (W) and height (H) of this ring resonator host were 40 um

espectively. The diameter (D) of the inner fused-silica microdisc was 220
Cross-sectional views corresponding to a dye-doped liquid-state polymer
) spin-coated, and (d) cured on the patterned wafer.
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