148 research outputs found

    Profiling Circulating Tumour Cells for Clinical Applications

    Get PDF
    Circulating tumour cells (CTCs) refer to cells found in the peripheral blood, which are derived from the primary or secondary tumour. They serve as an alternative to study the biology of the primary tumour especially when tissue biopsy is not available. However, major challenges in CTC analysis are the rarity of these cells and the purity of the isolated population. The advancement in technologies allows detection and enrichment of sufficiently pure CTCs at the single-cell level, facilitating downstream molecular characterisation. Single CTC analysis allows detection of key mutations that may be critical to disease management and helps to address the intercellular differences among tumour cells. In this chapter, we discuss the technologies for CTC isolation and the use of CTCs in achieving early detection and prognosis of cancer, real-time monitoring of cancer therapy and tailoring of personalised treatments

    Study and characterisation of the post processing ageing of sago pith waste biocomposites

    Get PDF
    This paper reports the post-processing ageing phenomena of thermoplastic sago starch (TPS) and plasticised sago pith waste (SPW), which were processed using twin-screw extrusion and compression moulding techniques. Wide angle X-ray diffraction (XRD) analyses showed that after processing, starch molecules rearranged into VH-type (which was formed rapidly right post processing and concluded within 4 days) and B-type (which was formed slowly over a period of months) crystallites. Evidence from Fourier transform infrared spectroscopy (FTIR) analyses corroborated the 2-stage crystallisation process, which observed changes in peak styles and peak intensities (at 1043 and 1026 cm-1) and band-narrowing. Thermogravimetric analysis (TGA) studies showed that the thermal stability of plasticised SPW declined continuously for 90 days before gradual increments ensued. For all formulations tested, post-processing ageing led to drastic changes in the tensile strength (increased) and elongation at break (decreased). Glycerol and fibres restrained the retrogradation of starch molecules in TPS and SPW

    Clinical Validation of an Ultra High-Throughput Spiral Microfluidics for the Detection and Enrichment of Viable Circulating Tumor Cells

    Get PDF
    Background: Circulating tumor cells (CTCs) are cancer cells that can be isolated via liquid biopsy from blood and can be phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation. Methodology/Principal Findings: Here, we enriched and characterized putative CTCs from blood samples of patients with both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system detected putative CTCs under high sensitivity (100%, n = 56) (Breast cancer samples: 12–1275 CTCs/ml; Lung cancer samples: 10–1535 CTCs/ml) rapidly from clinically relevant blood volumes (7.5 ml under 5 min). Blood samples were completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM), fluorescence in-situ hybridization (FISH) (EML4-ALK) or targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA), and demonstrate concordance with the original tumor-biopsy samples. Conclusions/Significance: We have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-time downstream analysis using next generation sequencing (NGS) or proteomic analysis.Singapore-MIT Alliance for Research and Technolog

    Phase 1 study of capmatinib in MET-positive solid tumor patients: Dose escalation and expansion of selected cohorts

    Get PDF
    Capmatinib is an oral, ATP-competitive, and highly potent, type 1b MET inhibitor. Herein, we report phase 1 dose-escalation results for capmatinib in advanced METpositive solid tumor patients and dose expansion in advanced non-lung tumors. Capmatinib was well tolerated with a manageable safety profile across all explored doses. Dose-limiting toxicities (DLT) occurred at 200 mg twice daily (bid), 250 mg bid, and 450 mg bid capsules; however, no DLT were reported at 600 mg bid (capsules). Capmatinib tablets at 400 mg bid had comparable tolerability and exposure to that of 600 mg bid capsules. Maximum tolerated dose was not reached; recommended phase 2 dose was 400 mg bid tablets/600 mg bid capsules; at this dose, C-trough >EC90 (90% inhibition of c-MET phosphorylation in animal models) is expected to be achieved and maintained. Among the dose-expansion patients (N = 38), best overall response across all cohorts was stable disease (gastric cancer 22%, hepatocellular carcinoma 46%, other indications 28%); two other indication patients with gene copy number (GCN) >= 6 achieved substantial tumor reduction. Near-complete immunohistochemically determined phospho-MET inhibition (H-score = 2) was shown following capmatinib 450 mg bid capsule in paired biopsies obtained from one advanced colorectal cancer patient. Incidence of high-level MET GCN (GCN >= 6) and MET-overexpressing (immunohistochemistry 3+) tumors in the expansion cohorts was 8% and 13%, respectively; no MET mutations were observed. Thus, the recommended phase 2 dose (RP2D) of capmatinib was 600 mg bid capsule/400 mg bid tablet. Capmatinib was well tolerated and showed antitumor activity and acceptable safety profile at the (ClinicalTrials.gov Identifier: NCT01324479).

    'Prechronous' metastasis in clear cell renal cell carcinoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Although metastatic carcinoma in the presence of an occult primary tumor is well recognized, underlying reasons for the failure of the primary tumor to manifest are uncertain. Explanations for this phenomenon have ranged from spontaneous regression of the primary tumor to early metastasis of the primary tumor before manifestation of a less aggressive primary tumor. We report a case of 'prechronous' metastasis arising from clear cell renal cell carcinoma, where metastatic disease initially manifested in the absence of a primary renal tumor, followed by aggressive growth of the primary renal lesion.</p> <p>Case presentation</p> <p>A 43-year-old Malay man initially presented to our facility with fever and cough. He subsequently underwent surgical resection of a 9 cm right-sided lung mass found on radiological examination. Histology showed a high-grade clear cell tumor with sarcomatoid differentiation, suggestive of a metastasis from clear cell renal cell carcinoma. However, no concurrent renal lesions were noted on computed tomographic evaluation at that time. Then, four months after lung resection, he presented with a subcutaneous mass in the left loin, as well as right loin discomfort. Computed tomography scanning revealed a 10 cm right renal mass, with renal vein and inferior vena cava invasion, as well as recurrent disease in the right thorax. Histological examination of the excised subcutaneous mass revealed a high-grade carcinoma consistent with clear cell renal cell carcinoma.</p> <p>Conclusions</p> <p>This is the first reported case of prechronous metastasis of renal cell carcinoma, with metastatic disease manifesting prior to the development of the primary lesion. The underlying mechanism is uncertain, but our patient's case provides anecdotal support for the early dissemination model of metastasis.</p

    Compendiums of cancer transcriptomes for machine learning applications

    No full text
    10.1038/s41597-019-0207-2SCIENTIFIC DATA6119
    corecore