12 research outputs found

    An Inductorless Gain-Controllable Wideband LNA Based on CCCIIs

    No full text
    In this paper, an inductorless and gain-controllable 0.5~2.5 GHz wideband low noise amplifier (LNA) based on second generation current controlled current conveyors (CCCIIs) is presented. The proposed wideband LNA utilizes CCCIIs as building blocks to implement the amplifier stage and impedance matching stage. By varying the DC biasing current of the CCCII, the voltage gain of the proposed LNA is controllable in the range of 1~18 dB. In the frequency range of 0.5~2.5 GHz, the post-layout simulation results show that the proposed LNA has a typical voltage gain S21 of 12.6 dB with a gain ripple of ±1.5 dB, an input and output return loss (S11 and S22) of, respectively, −21.4 dB to −16.6 dB and −18.6 dB to −10.6 dB, and a high reverse isolation S12 of −65.2 dB to −39.5 dB. A noise figure of 4.05~4.35 dB is obtained across the whole band, and the input third-order intercept point (IIP3) is −2.5 dBm at 1.5 GHz. Using a 0.18 μm RF CMOS technology, the LNA occupies an active chip area of only 0.096 mm2 with a power consumption of 12.0 mW

    Dynamic analysis and circuit realization of a novel variable-wing 5D memristive hyperchaotic system with line equilibrium

    No full text
    By introducing flux-controlled memristor and linear feedback term into the three-dimensional (3D) chaotic system, and using the state feedback control method to increase dimension, a novel variable-wing 5D memristive hyperchaotic system has been proposed in this paper. The proposed memristive hyperchaotic system has a line equilibrium point whose position is directly determined by the control parameter. The remarkable feature of the system is that the influence of positive feedback memristor and negative feedback memristor on the system and their similarities and differences are considered. Meanwhile, by analyzing the complex dynamic behavior of the system under different control parameters and initial values, it can be found that the proposed memristive hyperchaotic system shows many interesting phenomena including hidden extreme multistability, transient chaotic transition behavior and variable-wing characteristics. Finally, the hardware electronic circuit of the memristive hyperchaotic system is designed. The hardware experimental results are highly consistent with the numerical simulation ones, which demonstrate the physical realizability of the proposed system

    Multistability Analysis, Coexisting Multiple Attractors, and FPGA Implementation of Yu–Wang Four-Wing Chaotic System

    No full text
    In this paper, we further study the dynamic characteristics of the Yu–Wang chaotic system obtained by Yu and Wang in 2012. The system can show a four-wing chaotic attractor in any direction, including all 3D spaces and 2D planes. For this reason, our interest is focused on multistability generation and chaotic FPGA implementation. The stability analysis, bifurcation diagram, basin of attraction, and Lyapunov exponent spectrum are given as the methods to analyze the dynamic behavior of this system. The analyses show that each system parameter has different coexistence phenomena including coexisting chaotic, coexisting stable node, and coexisting limit cycle. Some remarkable features of the system are that it can generate transient one-wing chaos, transient two-wing chaos, and offset boosting. These phenomena have not been found in previous studies of the Yu–Wang chaotic system, so they are worth sharing. Then, the RK4 algorithm of the Verilog 32-bit floating-point standard format is used to realize the autonomous multistable 4D Yu–Wang chaotic system on FPGA, so that it can be applied in embedded engineering based on chaos. Experiments show that the maximum operating frequency of the Yu–Wang chaotic oscillator designed based on FPGA is 161.212 MHz

    Dynamic Analysis, Circuit Design, and Synchronization of a Novel 6D Memristive Four-Wing Hyperchaotic System with Multiple Coexisting Attractors

    No full text
    In this work, a novel 6D four-wing hyperchaotic system with a line equilibrium based on a flux-controlled memristor model is proposed. The novel system is inspired from an existing 5D four-wing hyperchaotic system introduced by Zarei (2015). Fundamental properties of the novel system are discussed, and its complex behaviors are characterized using phase portraits, Lyapunov exponential spectrum, bifurcation diagram, and spectral entropy. When a suitable set of parameters are chosen, the system exhibits a rich repertoire of dynamic behaviors including double-period bifurcation of the quasiperiod, a single two-wing, and four-wing chaotic attractors. Further analysis of the novel system shows that the multiple coexisting attractors can be observed with different system parameter values and initial values. Moreover, the feasibility of the proposed mathematical model is also presented by using Multisim simulations based on an electronic analog of the model. Finally, the active control method is used to design the appropriate controller to realize the synchronization between the proposed 6D memristive hyperchaotic system and the 6D hyperchaotic Yang system with different structures. The Routh–Hurwitz criterion is used to prove the rationality of the controller, and the feasibility and effectiveness of the proposed synchronization method are proved by numerical simulations
    corecore