21,672 research outputs found

    Edge Excitations and Non-Abelian Statistics in the Moore-Read State: A Numerical Study in the Presence of Coulomb Interaction and Edge Confinement

    Full text link
    We study the ground state and low-energy excitations of fractional quantum Hall systems on a disk at filling fraction ν=5/2\nu = 5/2, with Coulomb interaction and background confining potential. We find the Moore-Read ground state is stable within a finite but narrow window in parameter space. The corresponding low-energy excitations contain a fermionic branch and a bosonic branch, with widely different velocities. A short-range repulsive potential can stabilize a charge +e/4+e/4 quasihole at the center, leading to a different edge excitation spectrum due to the change of boundary conditions for Majorana fermions, clearly indicating the non-Abelian nature of the quasihole.Comment: 4 pages, 3 figures. New version shortened for PRL. Corrected typo

    Throughput efficient AODV for improving QoS routing in energy aware mobile adhoc network

    Get PDF
    Mobile Ad hoc Networks (MANETs) is a type of wireless network that is made up of mobile nodes which coordinate themselves without the help of a central coordinator. The network topology changes as nodes are mobile. One of the major challenges of MANET is limited bandwidth which tends to mitigate the Quality of Service (QoS) of the network as users are not satisfied. A variety of routing protocols has been employed aiming at improving the throughput of the network in order to meet user demands. This paper proposes the development of a throughput efficient Ad-hoc On demand Distance Vector (TE-AODV) routing protocol targeted towards improving the QoS of MANET by mitigating network overhead. In this work, all nodes are assumed to be transmitting while calculating their Instant Processing State (IPS) using the concept of knapsack problem. A threshold value for node IPS is set and any node below the set threshold value is not considered during data transmission. An improved Location Aided Routing (iLAR) is used for route search process which helped in reducing network overhead. Results from simulation showed that TE-AODV has improved the throughput of energy aware Ad-hoc On demand Distance Vector (E-AODV) routing protocol. TE-AODV improved the network throughput by 2.9% as a function of simulation time and 3.7% as a function of mobility of node over the E-AODV routing protocol

    Cosmic Coincidence and Asymmetric Dark Matter in a Stueckelberg Extension

    Full text link
    We discuss the possibility of cogenesis generating the ratio of baryon asymmetry to dark matter in a Stueckelberg U(1) extension of the standard model and of the minimal supersymmetric standard model. For the U(1) we choose LμLτL_{\mu}-L_{\tau} which is anomaly free and can be gauged. The dark matter candidate arising from this extension is a singlet of the standard model gauge group but is charged under LμLτL_{\mu}-L_{\tau}. Solutions to the Boltzmann equations for relics in the presence of asymmetric dark matter are discussed. It is shown that the ratio of the baryon asymmetry to dark matter consistent with the current WMAP data, i.e., the cosmic coincidence, can be successfully explained in this model with the depletion of the symmetric component of dark matter from resonant annihilation via the Stueckelberg gauge boson. For the extended MSSM model it is shown that one has a two component dark matter picture with asymmetric dark matter being the dominant component and the neutralino being the subdominant component (i.e., with relic density a small fraction of the WMAP cold dark matter value). Remarkably, the subdominant component can be detected in direct detection experiments such as SuperCDMS and XENON-100. Further, it is shown that the class of Stueckelberg models with a gauged LμLτL_{\mu}-L_{\tau} will produce a dramatic signature at a muon collider with the σ(μ+μμ+μ,τ+τ)\sigma(\mu^+\mu^-\to \mu^+\mu^-,\tau^+\tau^-) showing a detectable ZZ' resonance while σ(μ+μe+e)\sigma(\mu^+\mu^-\to e^+e^-) is devoid of this resonance. Asymmetric dark matter arising from a U(1)BLU(1)_{B-L} Stueckelberg extension is also briefly discussed. Finally, in the models we propose the asymmetric dark matter does not oscillate and there is no danger of it being washed out from oscillations.Comment: 36 pages, 7 figure

    Complete BFT Embedding of Massive Theory with One- and Two-form Gauge Fields

    Get PDF
    We study the constraint structure of the topologically massive theory with one- and two-form fields in the framework of Batalin-Fradkin-Tyutin embedding procedure. Through this analysis we obtain a new type of Wess-Jumino action with novel symmetry, which is originated from the topological coupling term, as well as the St\"uckelberg action related to the explicit gauge breaking mass terms from the original theory.Comment: 22 pages, no figures, references adde

    Topological Phase Separation In Trapped Ultracold Fermionic Gases

    Full text link
    We investigate the harmonically trapped 2D fermionic systems with a effective spin-orbit coupling and intrinsic s-wave superfluidity under the local density approximation, and find that there is a critical value for Zeeman field. When the Zeeman field larger than the critical value, the topological superfluid phases emerge and coexist with the normal superfluid phase, topological phase separation, in the trapped region. Otherwise, the superfluid phase is topologically trivial.Comment: 6 pages, 3 figure

    Fluctuation of Conductance Peak Spacings in Large Semiconductor Quantum Dots

    Full text link
    Fluctuation of Coulomb blockade peak spacings in large two-dimensional semiconductor quantum dots are studied within a model based on the electrostatics of several electron islands among which there are random inductive and capacitive couplings. Each island can accommodate electrons on quantum orbitals whose energies depend also on an external magnetic field. In contrast with a single island quantum dot, where the spacing distribution is close to Gaussian, here the distribution has a peak at small spacing value. The fluctuations are mainly due to charging effects. The model can explain the occasional occurrence of couples or even triples of closely spaced Coulomb blockade peaks, as well as the qualitative behavior of peak positions with the applied magnetic field.Comment: 13 pages, 4 figures, accepted for publication in PR

    L-functions of Symmetric Products of the Kloosterman Sheaf over Z

    Full text link
    The classical nn-variable Kloosterman sums over the finite field Fp{\bf F}_p give rise to a lisse Qˉl\bar {\bf Q}_l-sheaf Kln+1{\rm Kl}_{n+1} on Gm,Fp=PFp1{0,}{\bf G}_{m, {\bf F}_p}={\bf P}^1_{{\bf F}_p}-\{0,\infty\}, which we call the Kloosterman sheaf. Let Lp(Gm,Fp,SymkKln+1,s)L_p({\bf G}_{m,{\bf F}_p}, {\rm Sym}^k{\rm Kl}_{n+1}, s) be the LL-function of the kk-fold symmetric product of Kln+1{\rm Kl}_{n+1}. We construct an explicit virtual scheme XX of finite type over SpecZ{\rm Spec} {\bf Z} such that the pp-Euler factor of the zeta function of XX coincides with Lp(Gm,Fp,SymkKln+1,s)L_p({\bf G}_{m,{\bf F}_p}, {\rm Sym}^k{\rm Kl}_{n+1}, s). We also prove similar results for kKln+1\otimes^k {\rm Kl}_{n+1} and kKln+1\bigwedge^k {\rm Kl}_{n+1}.Comment: 16 page
    corecore