22,609 research outputs found

    Observation Of Turbulent Intermittency Scaling With Magnetic Helicity In An MHD Plasma Wind Tunnel

    Get PDF
    The intermittency in turbulent magnetic field fluctuations has been observed to scale with the amount of magnetic helicity injected into a laboratory plasma. An unstable spheromak injected into the MHD wind tunnel of the Swarthmore Spheromak Experiment displays turbulent magnetic and plasma fluctuations as it relaxes into a Taylor state. The level of intermittency of this turbulence is determined by finding the flatness of the probability distribution function of increments for magnetic pickup coil fluctuations B(t). The intermittency increases with the injected helicity, but spectral indices are unaffected by this variation. While evidence is provided which supports the hypothesis that current sheets and reconnection sites are related to the generation of this intermittent signal, the true nature of the observed intermittency remains unknown

    Suppressed Andreev Reflection at the Normal-Metal / Heavy-Fermion Superconductor CeCoIn5_5 Interface

    Full text link
    Dynamic conductance spectra are taken from Au/CeCoIn5_5 point contacts in the Sharvin limit along the (001) and (110) directions. Our conductance spectra, reproducibly obtained over wide ranges of temperature, constitute the cleanest data sets ever reported for HFSs. A signature for the emerging heavy-fermion liquid is evidenced by the development of the asymmetry in the background in the normal state. Below TcT_c, an enhancement of the sub-gap conductance arising from Andreev reflection is observed, with the magnitude of ∼\sim 13.3 % and ∼\sim 11.8 % for the (001) and the (110) point contacts, respectively, an order of magnitude smaller than those observed in conventional superconductors but consistent with those in other HFSs. Our zero-bias conductance data for the (001) point contacts are best fit with the extended BTK model using the d-wave order parameter. The fit to the full conductance curve of the (001) point contact indicates the strong coupling nature (2Δ/kBTc=4.642\Delta/k_{B}T_c = 4.64). However, our observed suppression of both the Andreev reflection signal and the energy gap indicates the failure of existing models. We provide possible directions for theoretical formulations of the electronic transport across an N/HFS interface. Several qualitative features observed in the (110) point contacts provide the first clear spectroscopic evidence for the dx2−y2d_{x^2-y^2} symmetry.Comment: 13 pages, 7 figures, LaTeX, paper invited and submitted to SPIE Conference on Strongly Correlated Electron Materials: Physics and Nanoengineering, in San Diego, California, July 31 - August 4, 200

    Scaling and non-Abelian signature in fractional quantum Hall quasiparticle tunneling amplitude

    Full text link
    We study the scaling behavior in the tunneling amplitude when quasiparticles tunnel along a straight path between the two edges of a fractional quantum Hall annulus. Such scaling behavior originates from the propagation and tunneling of charged quasielectrons and quasiholes in an effective field analysis. In the limit when the annulus deforms continuously into a quasi-one-dimensional ring, we conjecture the exact functional form of the tunneling amplitude for several cases, which reproduces the numerical results in finite systems exactly. The results for Abelian quasiparticle tunneling is consistent with the scaling anaysis; this allows for the extraction of the conformal dimensions of the quasiparticles. We analyze the scaling behavior of both Abelian and non-Abelian quasiparticles in the Read-Rezayi Z_k-parafermion states. Interestingly, the non-Abelian quasiparticle tunneling amplitudes exhibit nontrivial k-dependent corrections to the scaling exponent.Comment: 16 pages, 4 figure

    Disorder driven collapse of the mobility gap and transition to an insulator in fractional quantum Hall effect

    Full text link
    We study the nu=1/3 quantum Hall state in presence of the random disorder. We calculate the topologically invariant Chern number, which is the only quantity known at present to unambiguously distinguish between insulating and current carrying states in an interacting system. The mobility gap can be determined numerically this way, which is found to agree with experimental value semiquantitatively. As the disorder strength increases towards a critical value, both the mobility gap and plateau width narrow continuously and ultimately collapse leading to an insulating phase.Comment: 4 pages with 4 figure

    Mobility gap in fractional quantum Hall liquids: Effects of disorder and layer thickness

    Full text link
    We study the behavior of two-dimensional electron gas in the fractional quantum Hall regime in the presence of finite layer thickness and correlated disordered potential. Generalizing the Chern number calculation to many-body systems, we determine the mobility gaps of fractional quantum Hall states based on the distribution of Chern numbers in a microscopic model. We find excellent agreement between experimentally measured activation gaps and our calculated mobility gaps, when combining the effects of both disordered potential and layer thickness. We clarify the difference between mobility gap and spectral gap of fractional quantum Hall states and explain the disorder-driven collapse of the gap and the subsequent transitions from the fractional quantum Hall states to insulator.Comment: 13 pages, 8 figure

    Kilohertz QPO Peak Separation Is Not Constant in Scorpius X-1

    Get PDF
    We report on a series of twenty ~10^5 c/s, 0.125 msec time-resolution RXTE observations of the Z source and low-mass X-ray binary Scorpius X-1. Twin kilohertz quasi-periodic oscillation (QPO) peaks are obvious in nearly all observations. We find that the peak separation is not constant, as expected in some beat-frequency models, but instead varies from ~310 to ~230 Hz when the centroid frequency of the higher-frequency peak varies from ~875 to ~1085 Hz. We detect none of the additional QPO peaks at higher frequencies predicted in the photon bubble model (PBM), with best-case upper limits on the peaks' power ratio of 0.025. We do detect, simultaneously with the kHz QPO, additional QPO peaks near 45 and 90 Hz whose frequency increases with mass accretion rate. We interpret these as first and second harmonics of the so-called horizontal-branch oscillations well known from other Z sources and usually interpreted in terms of the magnetospheric beat-frequency model (BFM). We conclude that the magnetospheric BFM and the PBM are now unlikely to explain the kHz QPO in Sco X-1. In order to succeed in doing so, any BFM involving the neutron star spin (unseen in Sco X-1) will have to postulate at least one additional unseen frequency, beating with the spin to produce one of the kHz peaks.Comment: 6 pages including 3 figure
    • …
    corecore