23,183 research outputs found

    Matter wave soliton bouncer

    Full text link
    Dynamics of a matter wave soliton bouncing on the reflecting surface (atomic mirror) under the effect of gravity has been studied by analytical and numerical means. The analytical description is based on the variational approach. Resonant oscillations of the soliton's center of mass and width, induced by appropriate modulation of the atomic scattering length and the slope of the linear potential are analyzed. In numerical experiments we observe the Fermi type acceleration of the soliton when the vertical position of the reflecting surface is periodically varied in time. Analytical predictions are compared with the results of numerical simulations of the Gross-Pitaevskii equation and qualitative agreement between them is found.Comment: 8 pages, 5 figure

    Conformality Lost

    Full text link
    We consider zero-temperature transitions from conformal to non-conformal phases in quantum theories. We argue that there are three generic mechanisms for the loss of conformality in any number of dimensions: (i) fixed point goes to zero coupling, (ii) fixed point runs off to infinite coupling, or (iii) an IR fixed point annihilates with a UV fixed point and they both disappear into the complex plane. We give both relativistic and non-relativistic examples of the last case in various dimensions and show that the critical behavior of the mass gap behaves similarly to the correlation length in the finite temperature Berezinskii-Kosterlitz-Thouless (BKT) phase transition in two dimensions, xi ~ exp(c/|T-T_c|^{1/2}). We speculate that the chiral phase transition in QCD at large number of fermion flavors belongs to this universality class, and attempt to identify the UV fixed point that annihilates with the Banks-Zaks fixed point at the lower end of the conformal window.Comment: 30 pages, 6 figures; v2: typos fixed, references adde

    Destruction of valence-bond order in a S=1/2S=1/2 sawtooth chain with a Dzyaloshinskii-Moriya term

    Full text link
    A small value of the spin gap in quantum antiferromagnets with strong frustration makes them susceptible to nominally small deviations from the ideal Heisenberg model. One of such perturbations, the anisotropic Dzyaloshinskii-Moriya interaction, is an important perturbation for the S=1/2S=1/2 kagome antiferromagnet, one of the current candidates for a quantum-disordered ground state. We study the influence of the DM term in a related one-dimensional system, the sawtooth chain that has valence-bond order in its ground state. Through a combination of analytical and numerical methods, we show that a relatively weak DM coupling, 0.115J0.115J, is sufficient to destroy the valence-bond order, close the spin gap, and turn the system into a Luttinger liquid with algebraic spin correlations. A similar mechanism may be at work in the kagome antiferromagnet.Comment: 11 pages. References added. Revisions made as requested by referee
    corecore