2,280 research outputs found

    Functionalization of BaTiO3 nanoparticles with electron insulating and conducting organophosphazene-based hybrid materials

    Get PDF
    Novel core–shell structured organophosphazene (OPZ) coated BaTiO3 nanoparticles (OPZ@BaTiO3) were produced via a facile and rapid one-step nucleophilic substitution reaction in ambient conditions. The morphology, structure and textural properties of the core–shell nanoparticles were analysed via electron microscopy, spectroscopy, thermogravimetry and porosimetry, and the dielectric properties were evaluated by impedance spectroscopy. The thickness of the cross-linked OPZ shell was readily tailored by varying the weight ratio of the OPZ monomers to BaTiO3, which in turn affected the relative permittivity and the frequency dependence of the OPZ/BaTiO3 particles. A subsequent carbonisation treatment of the OPZ@BaTiO3 at 700 °C transformed the polymeric OPZ shell to a microporous carbonaceous shell, which dramatically increased the electrical conductivity of the particles. Organophosphazene chemistry offers a facile route to functionalise BaTiO3 nanoparticles without any pre-treatment, and generate a range of core–shell BaTiO3 nanoparticles with tailored dielectric and electrically conductive properties that can be used as active fillers for polymer based nanocomposites and energy storage applications. The effectiveness and advantages of OPZ chemistry over other reported methods in forming core–shell particles are demonstrated

    Multiscale-structuring of polyvinylidene fluoride for energy harvesting:the impact of molecular-, micro- and macro-structure

    Get PDF
    Energy harvesting exploits ambient sources of energy such as mechanical loads, vibrations, human motion, waste heat, light or chemical sources and converts them into useful electrical energy. The applications for energy harvesting include low power electronics or wireless sensing at relatively lower power levels (nW to mW) with an aim to reduce a reliance on batteries or electrical power via cables and realise fully autonomous and self-powered systems. This review focuses on flexible energy harvesting system based on polyvinylidene fluoride based polymers, with an emphasis on manipulating and optimising the properties and performance of the polymeric materials and related nanocomposites through structuring the material at multiple scales. Ferroelectric properties are described and the potential of using the polarisation of the materials for vibration and thermal harvesting using piezo- and pyro-electric effects are explained. Approaches to tailor the ferroelectric, piezoelectric and pyroelectric properties of polymer materials are explored in detail; these include the influence of polymer processing conditions, heat treatment, nanoconfinement, blending, forming nanocomposites and electrospinning. Finally, examples of flexible harvesting devices that utilise the optimised ferroelectric polymer or nanocomposite systems are described and potential applications and future directions of research explored

    Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites

    Get PDF
    The majority of polymers are electrical and thermal insulators. In order to create electrically active and thermally conductive polymers and composites, the hybrid-filler systems is an effective approach, i.e. combining different types of fillers with different dimensions, in order to facilitate the formation of interconnected conducting networks and to enhance the electrical, thermal, mechanical and processing properties synergistically. By tailoring polymer-filler interactions both thermodynamically and kinetically, the selective localisation of fillers in polymer blends and at the interface of co-continuous polymer blends can enhance the electrical conductivity at a low percolation threshold. Moreover, selective localisation of different filler types in different co-continuous phases can result in multiple functionalities, such as high electrical conductivity, thermal conductivity or electromagnetic interference shielding. In this review, we discuss the latest progress towards the development of electrically active and thermally conductive polymer composites, and highlight the technical challenges and future research directions

    Challenges and Opportunities of Self-healing Polymers and Devices for Extreme and Hostile Environments

    Get PDF
    Engineering materials and devices can be damaged during their service life as a result of mechanical fatigue, punctures, electrical breakdown, and electrochemical corrosion. This damage can lead to unexpected failure during operation, which requires regular inspection, repair, and replacement of the products, resulting in additional energy consumption and cost. During operation in challenging, extreme, or harsh environments, such as those encountered in high or low temperature, nuclear, offshore, space, and deep mining environments, the robustness and stability of materials and devices are extremely important. Over recent decades, significant effort has been invested into improving the robustness and stability of materials through either structural design, the introduction of new chemistry, or improved manufacturing processes. Inspired by natural systems, the creation of self-healing materials has the potential to overcome these challenges and provide a route to achieve dynamic repair during service. Current research on self-healing polymers remains in its infancy, and self-healing behavior under harsh and extreme conditions is a particularly untapped area of research. Here, the self-healing mechanisms and performance of materials under a variety of harsh environments are discussed. An overview of polymer-based devices developed for a range of challenging environments is provided, along with areas for future research

    Electrical dual-percolation in MWCNTs/SBS/PVDF based thermoplastic elastomer (TPE) composites and the effect of mechanical stretching

    Get PDF
    Dielectric thermoplastic elastomers (TPEs) offer a number of advantages over traditional dielectric elastomers or rubbers in terms of tailorable mechanical and electrical properties, higher mechanical strain, and ease of processing and shaping. Such a combination of properties has attracted increasing attention in flexible energy harvesting and storage applications. The combination of styrene–butadiene-styrene (SBS) and poly(vinylidene fluoride) (PVDF) has the potential to provide a combination of high elongation to break and increased relative permittivity, however the immiscibility between SBS and PVDF results in polymer blends with poor stretchability and processing properties. In this work, a dual percolated structure was created in a thermoplastic elastomer of SBS/PVDF (50/50 wt%), by coupling EVA as a compatibiliser for SBS/PVDF with multi-walled carbon nanotubes (MWCNTs) as a conductive filler that created an electrical percolation network. The elongation at break of SBS/PVDF was significantly enhanced by adding 20 wt% of EVA due to the reduced phase dimensions and enhanced interfacial adhesion. The addition of MWCNTs enabled the formation of a percolated network at 1 wt% in the SBS phase, followed by a second percolation at 3 wt% in both PVDF and SBS phases. The relative permittivity of the composite increased to 22.5 at 1 wt% MWCNT with a tan δ of 0.5, and further increased to 34.9 for a 2 wt% of MWCNT concentration while the tan δ remained constant. In-situ electrical testing for the SBS/PVDF thermoplastic elastomer under strain showed that, at 1 wt% MWCNT, the non-percolated PVDF islands acted as variable capacitors whose capacitance increased with degree of stretching. For the dual percolated structure formed at 3 wt% MWCNT, the capacitance and conductivity of the composites were unaffected up to 30% strain. The high relative permittivity and strains of over 100% means that the SBS/PVDF based thermoplastic elastomer is readily suitable for vibration control sensors, variable impedance devices, energy harvesters and artificial muscles and actuators

    Intrinsic tuning of poly (styrene-butadiene-styrene) (SBS) based self-healing dielectric elastomer actuators with enhanced electromechanical properties

    Get PDF
    The electromechanical properties of a thermoplastic styrene-butadiene-styrene (SBS) dielectric elastomer was intrinsically tuned by chemical grafting with polar organic groups. Methyl thioglycolate (MG) reacted with the butadiene block via a one-step thiol-ene ‘click’ reaction under UV at 25°C. The MG grafting ratio reached 98.5 mol% (with respect to the butadiene alkenes present) within 20 minutes and increased the relative permittivity to 11.4 at 103 Hz, with a low tan δ. The actuation strain of the MG grafted SBS dielectric elastomer actuator was ten times larger than the SBS-based actuator, and the actuation force was four times greater than SBS. The MG grafted SBS demonstrated an ability to achieve both mechanical and electrical self-healing. The electrical breakdown strength recovered to 15% of its original value, and the strength and elongation at break recovered by 25% and 21%, respectively, after three days. The self-healing behaviour was explained by the introduction of polar MG groups that reduce viscous loss and strain relaxation. The weak CH/π bonds through the partially charged (δ+) groups adjacent to the ester of MG and the δ- centre of styrene enable polymer chains to reunite and recover properties. Intrinsic tuning can therefore enhance the electromechanical properties of dielectric elastomers and provides new actuator materials with self-healing mechanical and dielectric properties

    Dynamic crosslinked rubbers for a green future:A material perspective

    Get PDF
    Conventional rubber products, such as tires, seals, tubing, and damping systems are manufactured via a vulcanization process, which forms covalently crosslinked network structures and ensures mechanical robustness, thermal stability and chemical resistance. However, the covalent networks are permanent and these products cannot be reprocessed or reshaped, which makes vulcanised rubbers one of the major challenges facing waste management and the circular economy. To reduce waste pollution for products such as tires, conventional vulcanised rubbers must be replaced with reversibly crosslinked structures which are able to achieve mechanical robustness and chemical stability, whilst also being able to be reprocessed, reshaped, reused and recycled. State-of-the-art developments in supramolecular chemistry have shed light on a new generation of reprocessable elastomers and rubbers, which have the potential to tackle the long-standing issue of waste tire pollution. The introduction of dynamic covalent bonds or supramolecular interactions in traditional elastomers can produce reversibly crosslinked structures, where the synergy between the dynamic bonds in the network are carefully optimised to balance the ease of processing, mechanical properties, and structural stability. Furthermore, dynamic covalent bonds and supramolecular interactions can provide ‘living’ functions to elastomers, such as self-healing and stimuli-responsiveness. These properties can be further enhanced by the addition of nanofillers with tailored surface chemistry to provide a dual role as a dynamic crosslinker and reinforcing element. To create reprocessable and recyclable elastomers, the coupling of multiple dynamic interactions provides unlimited possibilities to optimise the structure and properties of recyclable rubbers. Here we critically overview the applications of dynamic chemistry in rubbers, with a focus on macromolecular design and strategies to balance the mechanical, functional (e.g. self-healing) and reprocessing properties.</p

    ActionPrompt: Action-Guided 3D Human Pose Estimation With Text and Pose Prompting

    Full text link
    Recent 2D-to-3D human pose estimation (HPE) utilizes temporal consistency across sequences to alleviate the depth ambiguity problem but ignore the action related prior knowledge hidden in the pose sequence. In this paper, we propose a plug-and-play module named Action Prompt Module (APM) that effectively mines different kinds of action clues for 3D HPE. The highlight is that, the mining scheme of APM can be widely adapted to different frameworks and bring consistent benefits. Specifically, we first present a novel Action-related Text Prompt module (ATP) that directly embeds action labels and transfers the rich language information in the label to the pose sequence. Besides, we further introduce Action-specific Pose Prompt module (APP) to mine the position-aware pose pattern of each action, and exploit the correlation between the mined patterns and input pose sequence for further pose refinement. Experiments show that APM can improve the performance of most video-based 2D-to-3D HPE frameworks by a large margin.Comment: 6 pages, 4 figures, 2023ICM
    corecore