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Abstract

The electromechanical properties of a thermoplastic styrene-butadiene-styrene (SBS) 

dielectric elastomer was intrinsically tuned by chemical grafting with polar organic groups. 

Methyl thioglycolate (MG) reacted with the butadiene block via a one-step thiol-ene ‘click’ 

reaction under UV at 25°C. The MG grafting ratio reached 98.5 mol% (with respect to the 

butadiene alkenes present) within 20 minutes and increased the relative permittivity to 

11.4 at 103 Hz, with a low tan δ. The actuation strain of the MG grafted SBS dielectric 

elastomer actuator was ten times larger than the SBS-based actuator, and the actuation 

force was four times greater than SBS. The MG grafted SBS demonstrated an ability to 

achieve both mechanical and electrical self-healing. The electrical breakdown strength 
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recovered to 15% of its original value, and the strength and elongation at break recovered 

by 25% and 21%, respectively, after three days. The self-healing behaviour was 

explained by the introduction of polar MG groups that reduce viscous loss and strain 

relaxation. The weak CH/π bonds through the partially charged (δ+) groups adjacent to 

the ester of MG and the δ- centre of styrene enable polymer chains to reunite and recover 

properties. Intrinsic tuning can therefore enhance the electromechanical properties of 

dielectric elastomers and provides new actuator materials with self-healing mechanical 

and dielectric properties.

1. Introduction

Smart electroactive polymers are able to change their shape and size under applied 

electric fields, and operate through ionic or electronic actuation mechanisms. Dielectric 

elastomers are a class of electronically active polymers1 which typically exhibit strains up 

to 400%, fast response times under an applied electric field and can transduce electrical 

energy into mechanical energy (actuation) or vice versa for energy harvesting 

applications.2-3  
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4

Dielectric elastomers typically exhibit a low permittivity, which limits performance for 

actuator and energy harvesting applications due to a low maximum theoretical energy 

density, given by Eq.1:

(1)𝑈𝑒 = 0.5𝜀𝑟𝜀0𝐸𝑏
2

where,  is the theoretical energy density,  the relative permittivity,   the permittivity 𝑈𝑒 𝜀𝑟 𝜀0

of free space and  the breakdown strength. The high breakdown strength and low 𝐸𝑏

stiffness of dielectric elastomers, in comparison to piezoelectric ceramic materials, are of 

interest for use in actuation and energy generation applications. An increase of their 

relative permittivity has the potential to increase performance significantly, as indicated 

by Eq.1. 

Extensive research has focussed on improving the relative permittivity of dielectric 

elastomers, either extrinsically through the addition of fillers or intrinsically through 

chemical modification. The extrinsic approach of incorporating ceramic fillers, such as 

BaTiO3,4-5 or electrically conducting metallic or carbon based nanomaterials6-7 has the 

advantage of using materials with a high relative permittivity to increase the effective 

permittivity of the composites. However, the enhancement in the relative permittivity of 
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5

such materials is limited by the poor compatibility between the filler surface and the 

polymer matrix, and is often at the expense of a reduced breakdown strength,1, 8 reduced 

mechanical properties9 and a large dielectric loss9 due to interfacial defects.10

Intrinsic chemical modification of dielectric elastomers is achieved through chemically 

grafting polar groups to elastomers to increase the atomic polarisation by increasing the 

dipole moment across the polymer chain.11-13 Chemical modification is advantageous 

compared to extrinsic modification methods as it can maintain a low dielectric loss and a 

high breakdown strength due to the formation of a homogeneous polymer structure. The 

deformable nature of the elastomers can also be maintained after modification.1

Small polar groups including allyl cyanide,14 3-mercaptopropionitrile15-16 and 2-

(methylsulfonyl)-ethanethiol,17 and liquid crystal18-19 have been grafted to various polymer 

structures resulting in an increase in their relative permittivity up to 22.7.17 Grafting 

conducting poly(aniline) to poly(urethane) through a copper phthalocyanine ring resulted 

in a large increase in relative permittivity to 105.20

To further enhance the electrical breakdown strength, a novel approach is to enable the 

elastomer to self-heal either electrically or mechanically, so that the material can sustain 
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6

large numbers of operational cycles under high electric field conditions without 

experiencing breakdown.1, 21-22 Self-healing is normally achieved through non-covalent 

interactions such as hydrogen bonding,23 π-π stacking and interpenetrating polymer 

networks.22 One example of a self-healing actuator has used an iron catalyst incorporated 

into poly(dimethylsiloxane) to act as the crosslinker. After mechanically damaging the 

material with a hole and leaving it for 72 hours to heal, the material showed no electrical 

breakdown at the damaged site until the electric field was 188 kV cm-1.24

In this paper, poly(styrene-butadiene-styrene) (SBS) block copolymer (Vector 8505A) 

was chemically grafted with methyl thiolglycolate (MG) through a  thiol-ene click 

chemistry. The SBS material was specifically selected for this study due to its high strain 

at break (over 800%), high breakdown strength (~ 65 V μm-1)25, and ease of processing 

where the available alkene groups on the butadiene block can be readily modified via a thiol-ene 

click chemistry. The attachment of polar groups has further increased the tensile strain, 

reduced the viscous loss, enhanced relative permittivity without increasing the dielectric 

loss, which leads to significantly enhanced electromechanical properties and actuation 

performance of the modified SBS.  In addition, we demonstrate that the modified SBS 
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7

exhibits rapid self-healing behaviour, which provides the potential to increase the lifetime 

of the material in actuation and energy generation applications and enable the material 

to be reused in the event of failure. The self-healing mechanism is analysed from the 

perspective of the macromolecular interactions. This work will inspire further research into 

the area of self-healing dielectric elastomers to develop materials which not only have 

excellent mechanical and electrical properties, but also excellent cycle lifetimes and 

endurance.  

2. Experimental

2.1. Materials

Styrene-butadiene-styrene block copolymer (SBS, Vector 8508A) was purchased from 

Dexco. Tetrahydrofuran (THF, GPR Reactapur, 99.9%) was purchased from VWR, UK. 

Hexane (for HPLC >95%), chloroform-d (99.8%), 2,2-dimethoxy-2-phenylacetophenone 

(DMPA, 99%) and methyl thioglycolate (95%) were purchased from Sigma-Aldrich, UK. 
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8

All chemical were used as received. Carbon black grease was purchased from MG 

Chemicals, UK to act as a compliant electrode for actuator studies. 

2.2. Synthesis

In a typical synthesis, 10 g SBS was dissolved in 90 g of THF. Following this, 0.2 g of 

DMPA and 46.9 mL (4× molar excess relative to the butadiene block of SBS) of methyl 

thioglycolate (MG) was added to the solution. The solution was then irradiated with UV 

light @ 365 nm with 25% intensity (50 W) using an OmniCure Series 2000 200 W UV 

lamp for 5 to 20 minutes. The resulting modified SBS was purified by precipitation in 

hexane and dried in a vacuum oven overnight at 60 °C. The mass of the resulting product 

was 21.3 g (98.5% grafting). 1H NMR (400 MHz, CDCl3): δ = 7.07 (br, 3 H, Hbenzene), 6.53 

(br, 2 H, Hbenzene), 5.39 (br, 4 H, -HC=CH- and HC=CH2), 3.73 (S, 3 H, COOCH3), 3.23 

(S, 2 H, OOC-CH2-S), 2.75 (br, 1 H, (CH2)2CHS), 2.64 (br, 2 H, H2CCH2S), 1.73 (br, 2 H, 

H2C-CH2-CH), 1.55 (br, 6 H, (-H2C)2CH2, -HCCH2CH2- and (-HC)2CH2), 1.43 (br, 2 H, -

HCCH2CH2), 1.26 (br, 1 H, (H2C)3CH) ppm. FT-IR (cm-1): 2927, 1729, 1435, 1272, 1128, 

1007, 757. The methyl thioglycolate modified SBS with different graft molar ratios is 
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9

denoted as MGSBS (x%),  i.e., MGSBS (53.7%) @5 mins UV, MGSBS (68.3%) @10 

mins UV and MGSBS (98.5%) @20 mins UV.

2.3. Characterisation

SBS and MGSBS were characterised by 1H NMR, all spectra were recorded using a 

Bruker Avance III HD 400 MHz spectrometer. Chemical shifts were internally referenced 

to TMS using CDCl3. Spectra were processed using ACD/NMR processor version 12.01 

(ACD/Labs). Gel Permeation Chromatography (GPC) was carried out using an Agilent 

390-MDS with two PLgel Mixed-C columns and THF with 2% TEA + 0.01% BHT as an 

eluent and analysed using Agilent GPC/SEC software.  

Tensile testing was performed using a Shimadzu Autograph AGS-X tester with samples 

conforming to ASTM-D638-14 type V. The extension rate was 50 mm min-1 (strain rate = 

0.1095 s-1) with a 10 kN load cell and tests were carried out at room temperature. Stress 

relaxation testing was investigated by stretching the tensile specimens to 100% 

elongation at 50 mm min-1 and holding the samples at constant strain until the stress 

reached equilibrium. Cyclic stress softening was performed by elongating specimens to 
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10

100%, 300% and 500% elongation and back to 0% under a controlled extension rate of 

50 mm min-1 for 5 cycles. Fourier transform infrared spectroscopy (FT-IR) spectra were 

collected using a Bruker Tensor 27 at a resolution of 4 cm-1 with 32 scans. Raman Spectra 

were recorded using a Renishaw inVia™ Reflex Raman Microscope with a 532 nm diode-

pumped solid-state laser. Solution state UV-Vis spectroscopy was performed using an 

Agilent Cary 60 photospectrometer between 200 nm and 800 nm. Samples were 

dissolved in DCM to a concentration of 1×10-5 mol dm-3 . Solid-state UV spectroscopy 

was performed on compression moulded thin films of 0.5 mm thickness. Dynamic 

Mechanical Thermal Analysis (DMTA) was performed on samples 5.0 mm × 5.0 mm × 

2.3 mm in single cantilever mode with a 50 μm amplitude and a frequency of 1 Hz between 

-120 °C and 135 °C. Small Angle X-ray Scattering (SAXS) was carried out using a Xenocs 

Xeuss 2.0 SAXS system equipped with both a 1-D and 2-D detector. AFM was imaged 

using a Bruker Dimension Icon in Peakforce QNM mode with Scanasyst-Air tips using 

tapping mode at a scan rate of 0.2 Hz.

Impedance spectroscopy measurements were carried out using a Princeton Applied 

Research Parastat MC with a PMC-2000 card and a two-point probe between 100~106 
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Hz on thin films of thickness between 100~200 μm that were formed by compression 

moulding using a Rondol manual hot press at 190 °C and 5 kN of force.

2.4 Dielectric elastomer actuation

To demonstrate the actuation function, the MGSBS and SBS films were coated with a 

compliant electrode based on a carbon black grease from MG Chemicals to enable the 

two types of elastomers to be actuated under driving voltages (in kV). The following 

configurations were arranged: (i) Dielectric elastomer actuation in strain: The MGSBS and SBS 

were cut into samples of area 30 mm × 30 mm and pre-strained by 33.33% in planar directions and 

clamped onto the rigid frame as shown in Figure S1a. Carbon black grease was applied to form a 

circular electrode region of diameter 15 mm from the centre. The actuation was driven by voltages 

of 3, 4 and 5 kV, and the pre-strained state and the actuated state of the samples were recorded by 

a camera to allow estimation of the voltage-induced planar deformation. To ensure the actuation 

reached a steady state, the actuation state was set to be 5 seconds after switching on the high 

voltage power supply.  (ii) Actuation in force: The MGSBS and the SBS were cut into samples of 

area 40 mm × 40 mm with a rectangular electrode region of area 20 mm × 20 mm defined prior to 

pre-strain.  The samples were then pre-strained by 20% in the direction of actuation, fixed to the 

test rig on the top and mounted onto a load cell on the bottom as shown in Figure S1b. The load 

cell was customized to measure small forces up to 5 N.  The high voltages were applied to the 

samples in a sequence that lasted 60 seconds, as shown in Figure S1c. The force was measured by 

the load cell throughout. A high voltage (HV) generator, based on a HV DC-DC converter 
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12

(module 15A24 from PPMTM), was used to amplify the input voltage (0-5 V) to the voltage 

output (0-15 kV). In the second set of experiments, the actual voltage output was also 

measured using a built-in channel from the HV module.

3. Results and Discussion

3.1. Chemical Modification of SBS

MGSBS was synthesised via a thiol-ene click reaction in air and at room temperature, 

the structures were verified via 1H NMR, FT-IR and GPC. MG was kept in a three or four 

times molar excess with respect to the butadiene section of SBS, and no gelation was 

detected during the reaction as characterised by 1H NMR. 

1H NMR and FT-IR spectra of the resultant MGSBS are given in Figure 1a and b. In 

Figure 1a the characteristic CH2 and CH3 peaks in 1H NMR were observed at 3.23 and 

3.73 ppm, respectively, which were absent in the 1H NMR of SBS, as seen in Figure S2. 

The reduction in the alkene peaks of the butadiene block at 5.39 and 4.98 ppm is apparent 

as the grafting ratio increases, indicating that the reaction of methyl thioglycolate and the 
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13

vinyl groups of butadiene had taken place. Furthermore, FT-IR confirmed the presence 

of a C=O stretch for an ester group at 1729 cm-1 and two C-O stretches at 1272 and 1020 

cm-1 to indicate the successful grafting of methyl thioglycolate onto the SBS backbone. 

1H NMR was used to determine the grafting efficiency of the reaction at different UV 

exposure times. Increasing the UV light exposure time from 5 to 20 minutes resulted in 

increasing the grafting ratio of MG to SBS from 53.7% up to 98.5%, with respect to the 

butadiene block. 

The number average molecular weight (Mn=86158 g mol-1) and polydispersity index 

(PDI=1.17) of SBS chains become 79417 g mol-1 and 2.57, respectively, after grafting of 

98.5% of methyl thioglycolate, indicating the UV initiated reaction caused some polymer 

chain scission. An increase in weight average molecular weight (Mw) from 100768 g mol-1 

to 203883 g mol-1 further confirmed the successful grafting of methyl thioglycolate to SBS. 

3.2. Mechanical and electrical properties of methyl thioglycolate modified SBS 

The equations of state for an ideal dielectric elastomer actuator can be expressed in 

Eq.2,26
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(2)
𝜎1 + 𝜀𝐸 2 = 𝜆1

∂𝑊(𝜆1,𝜆2)
∂𝜆1

𝜎2 + 𝜀𝐸2 = 𝜆2
∂𝑊(𝜆1,𝜆2)

∂𝜆2

where,  are the applied stresses in planar directions,  the stretches due to 𝜎1,2 𝜆1,2

mechanical in planar directions,  the permittivity of the dielectric elastomer ( ),  𝜀 𝜀 = 𝜀𝑟𝜀0 𝐸

the applied electric field and  the Helmholtz free energy density. By comparing 𝑊(𝜆1,𝜆2)

the un-actuated ( ) and actuated states, actuation stresses in planar directions, , 𝐸 = 0  ∆𝜎1,2

correlate to the Maxwell pressure, , as expressed in Eq.3,𝜀𝐸 2

(3)∆𝜎1,2 ∝  𝜀𝐸 2

For a dielectric elastomer actuator with equal bi-axial pre-strains, as in the actuation in 

strain experiment, the actuation strain in the radial direction and change in area due to 

actuation, and , correlate to the Maxwell pressure, , and the elasticity modulus ∆𝑠𝑟 ∆𝑠𝑎 𝜀𝐸 2

of the elastomer, , as  shown in Eq.4.𝑌

(4)𝑠𝑟 ∝  𝜀𝐸 2, 
1
𝑌

𝑠𝑎 = 𝑠𝑟
2

This indicates for actuation a high permittivity, high breakdown strength and low elastic 

modulus are desirable, and the mechanical and electrical properties will now be 

described.
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The mechanical properties of SBS and MGSBS are shown in Figure 2. After grafting of 

98.5% of methyl thioglycolate, the tensile strength and elongation at break of SBS 

decreased  from 9.00 MPa and 857%, to 3.13 MPa and 569%, respectively. The Young’s 

modulus of SBS was significantly reduced from 51.7 MPa to 2.87 MPa, which will benefit 

the actuation function of dielectric elastomers, and will be discussed in the following 

sections.

The effects of grafting polar groups on the mechanical behaviour was examined by 

stress relaxation and cyclic stress softening experiments. The cyclic stress softening 

testing of SBS and MGSBS is shown in Figure 2b and c. In Figure 2b, SBS showed large 

viscous losses within the samples after five cycles regardless of whether the sample was 

elongated 100%, 300% or 500%. In comparison, Figure 2c shows that for MGSBS 

(98.5%) the viscous losses are very low for 100% and 300% elongation and are only 

observed in significant quantities for 500% elongation.  In fact, increasing the grafting of 

methyl thioglycolate results in a reduction in the viscous losses exhibited by the material 

at strains of 100% to 500%, as shown in Figure 2d. 
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The stress-relaxation of SBS and MGSBS were evaluated when subjected to a fixed 

100% elongation until they reached equilibrium. As shown in Figure 3, MGSBS (98.5%) 

reached equilibrium after 10 minutes and the stress only decreased by 22%. This shows 

that its stronger intermolecular interactions prevent the polymer chains slipping and thus 

compensate the effect of reduced chain entanglement observed with MGSBS (53.7%).  

The reduced relaxation of MGSBS (98.5%) will also be of benefit for actuation to maintain 

a constant force or displacement.

The electrical properties of SBS and MGSBS were characterised by impedance 

spectroscopy. As shown in Figure 4, the initial unmodified SBS has a relative permittivity 

of 2.8, and AC conductivity of 1 × 10-9 S m-1 at 103 Hz, showing the highly insulating 

nature of SBS. The grafting of 98.5 % MG to SBS results in an increase in relative 

permittivity up to 11.4 at 103 Hz, close to that of the piezoelectric poly(vinylidene 

fluoride).27 While the electrical tan δ remains similar to SBS at 9 × 10-3 for 103 Hz (where 

) , as seen in Figure 4b. Furthermore, the phase angle of both SBS tan 𝛿 =
𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑙𝑜𝑠𝑠

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦
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and MGSBS remains at -90°, see Figure S3, demonstrating the insulating nature of both 

elastomers. 

The relative permittivity enhancement of the material is higher than that reported for 

chemical modification of SBS using an analogous polar group, thioglycolic acid, which 

was 7.2 at 103 Hz. Other examples in the literature include grafting 3-

mercaptopropionitrile and 2-(methylsulfonyl)-ethanethiol to polydimethylsiloxane, which 

increased the relative permittivity to 18.4 and 22.7 respectively.15, 17 However, these 

elastomers had dielectric losses several orders of magnitude higher than reported in this 

work, reducing their energy transduction efficiency.

In summary, the grafting of MG group of 98% to SBS reduced the Young’s modulus by 

94%, reduced the viscous loss by up to 80% at 300% elongation, while enhancing the 

relative permittivity from 2.8 to 11.4, without increasing the dielectric loss. These results 

have confirmed the MGSBS as a novel dielectric actuation material, and this is now 

demonstrated by evaluation of SBS and MGSBS based actuators.

3.3. Dielectric elastomer actuation of SBS and MGSBS
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Figure 5 shows that the MGSBS-based dielectric elastomer actuator generates 10 times 

larger actuation strain than the SBS-based DEA. The actuation strain was evaluated 

between the state with no electric field and the steady state after 5 seconds of applied 

electric field. Under an electric field of 250 kV cm-1, the actuation strain causedMGSBS  

radius to increase 13% and the area of MGSBS to increase 17% compared to no 

application of electric field. The actuation strain of the SBS under the same electric field 

could not be obtained because electrical breakdown occurred in the electrode region 

immediately after the application voltage. Instead, the actuation strain of SBS was 

recorded at the lower field of 200 kV cm-1. The actuation of SBS increased the radius only 

1.2% and increased the area 1.4%. Three reasons for the outstanding actuation 

performance of the MGSBS compared with the SBS are:

(i) its lower elastic modulus results in larger material deformation under the same Maxwell 

pressure, as discussed in section 3.2, Figure 2.

(ii) its higher relative permittivity (11.4)  that generates larger Maxwell pressure under the same 

driving voltage (i.e. larger  and  according to Eq.4), as discussed in section 3.2, Figure 4. 𝑠𝑟 𝑠𝑎

(iii) its higher dielectric strength that allows higher driving voltage (i.e. larger ,  and  𝜎1 𝑠𝑟 𝑠𝑎

according to Eq.3 and 4).
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Figure 5 shows the experimental results for dielectric elastomer actuation in force. 

Constant voltages were applied on the MGSBS-based and SBS-based actuators for 5 

seconds from 3 kV (150 kV cm-1) to 8 kV (400 kV cm-1).  Unlike the previous experiments, 

no electrical breakdown occurred for both materials since samples are pre-strained to a 

lower degree (20% in one direction compared with the equal-biaxial pre-strain of 33% in 

two directions), and are therefore thicker and have higher breakdown voltages. In this 

experiment, actuation force was defined as the net force between the un-actuated state 

and the actuated state (5 seconds after voltage application). For an applied electric field 

of 400 kV cm-1, the MGSBS generates an actuation force of 0.12 N, which is four times 

higher than the actuation force from the SBS (0.03 N). Unlike the measured the actuation 

strain, the actuation force is independent of the elastic modulus of the material and 

depends only on the Maxwell pressure (i.e. the relative permittivity of the material). The 

difference in actuation forces between the MGSBS and the SBS therefore, according to 

Eq.3, agrees well with the results of the improvement in dielectric properties, as in Figure 

4.
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3.4 Self-healing of methyl thioglycolate modified SBS

3.4.1 Self-healing after mechanical breakdown 

The MGSBS with a grafting ratio of 98.5% exhibited an unexpected, yet remarkable, 

ability to rapidly recover some of its mechanical properties upon re-attaching two pieces 

of cut polymer; this was achieved simply by pushing two pieces together at room 

temperature (RT) without using any other external stimulus. This self-healing behaviour 

was observed for MGSBS at the higher grafting levels of 68.3% and 98.5%, but not for 

SBS or MGSBS at a lower grafting of 53.7%.

The extent of self-healing recovery for MGSBS (68.3%) and MGSBS (98.5%) was 

investigated for varying time periods at RT (thermostatically controlled to 20°C) to 

determine how the tensile strength and elongation at break recovered over time. As 

shown in Figures S4a and S4b, a maximum tensile strength recovery of 25.4% (0.80 

MPa) and an elongation at break recovery of 20.9% (116.6% strain) were reached after 

three days (4320 minutes). In comparison, the tensile strength recovery and elongation 

at break recovery was less than 5% for MGSBS (68.3%).

Page 20 of 48

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



21

The temperature dependency of self-healing was investigated at 37°C for up to three 

days. 37 °C was investigated for self-healing at human body temperature, for potential 

biological applications. For samples of MGSBS (98.5%) healed at 37°C, the tensile 

strength and elongation at break rapidly recovered to similar levels as those healed at 

room temperature, Figure S5. However, subsequent time intervals revealed the samples 

reached a maximum tensile recovery of 17.0% (0.5 MPa) and elongation at break 

recovery of 13.3% (70% strain), demonstrating a highly temperature sensitive response. 

This suggests that the self-healing property is a result of weak intermolecular interactions 

that can be easily overcome, which provides further scope for developing high self-

healing elastomers. 

Furthermore, the potential reusability of the material through multiple self-healing cycles 

was investigated by using the same samples for all self-healing experiments. Figure 6 

shows that after multiple self-healing cycles, the samples had a tensile strength recovery 

of 17.7% (0.56 MPa) and elongation at break recovery of 18.9% (105% strain) after three 

days. This demonstrates that the MGSBS can be self-healed multiple times without a 

major degradation of the self-healing ability. 
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3.4.2 Self-healing under low electric field 

While mechanical self-healing is of interest, the potential for healing after electric 

breakdown is of interest in dielectric elastomers due to the high operating electric fields. 

Figure 7a compares the AC conductivity, capacitance and phase angle of MGSBS 

(98.5%), (i) prior to breakdown, (ii) after breakdown, and (iii) 24 hours after breakdown. 

Prior to breakdown, MGSBS (98.5%) exhibits a low AC conductivity (< 1×10-9 S m-1), and 

it is frequency independent at low frequencies (<1 kHz) and frequency dependent  at high 

frequencies (>1 kHz); this is often termed as the Universal Dielectric Response of many 

insulating materials including polymers.28 Figure 7b shows that the capacitance of 

MGSBS (98.5%) is frequency independent for the frequency range studied, indicating a 

capacitive response due to the low conductivity of the material. The capacitive response 

can be observed in the phase angle, Figure 7c, where the phase angle is -90° above 100 

Hz, since in a capacitive material AC current lags AC voltage by 90°. At low frequencies, 

the phase angle approaches 0° due to the presence of a small conductivity in the material.
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MGSBS (98.5%) was then subjected to dielectric breakdown. A high voltage of 8.5 kV 

(corresponding to 200 kV cm-1) was applied on the electrode region until electrical 

breakdown was detected in voltage monitoring channel of high voltage power supply. The 

voltage application was then switched off immediately to stop the failure from further 

propagation. Electrical breakdown of the material leads to a formation of a pinhole, with 

a diameter of approximately 100 μm. This is from thermal runaway due to localised Joule 

heating in the sample. Joule heating increases the electrical conductivity in those 

locations, causing further localised heating until breakdown of the material.29 

After dielectric breakdown, the frequency dependency properties change significantly 

due to the electrical short circuit formed by the pinhole and a conductive path through the 

thickness of MGSBS (98.5%); for example, caused by carbon formation during 

breakdown. The AC conductivity increased significantly compared to before breakdown, 

Figure 7a, and is now frequency independent, typical of a pure conductor. This is also 

observed in the phase angle, which is close to 0° across the entire frequency range, 

because current and voltage are in phase for a conductor. The capacitance also 

increased significantly, which is common in materials dominated by conductivity.30
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After a period of 24 hours, the frequency dependency properties are more similar to 

MGSBS (98.5%) before breakdown, where the AC conductivity, capacitance and phase 

angle indicate a capacitor behaviour of the healed MGSBS at the low electric fields (25 V 

cm-1). 

3.4.3 Self-healing under high electric field 

Figure S6 shows the polarisation – electric field response of MGSBS (98.5%) for applied 

voltages up to 4 kV across a sample of approximately 400 μm; which corresponds to an 

electric field of 100 kV cm-1. The polarisation – electric field is linear, since the MGSBS 

(98.5%) is capacitive and the constant gradient with field indicates that the permittivity is 

insensitive to applied electric field. To achieve electrical breakdown, a higher potential 

difference was required (~8.5 kV), which corresponds to an electric field of 200 kV cm-1. 

After 24 hours, the low field measurements, Figure 7, indicated healing had taken place; 

however, it is important to assess the response of healed MGSBS (98.5%) to higher 

electric fields which are typical of operation. The healed material after 24 hours could 

survive electric fields of 12.5 kV cm-1, which is 6% of the initial breakdown strength. This 

initially modest healing may be the result of the healed material containing electrically 
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conductive regions, such as carbon, which can act as an electric field concentration to 

limit the amount of healing possible. The application of small mechanical compression to 

the damaged pinhole region enhanced healing and led to an improvement of the 

maximum applied electric field after 24 hours to 1.25 kV (31 kV cm-1), which is 15% of the 

original breakdown strength and similar to the mechanical property recovery (10-25%).

3.4.4 Self-healing mechanism of MGSBS upon mechanical or electrical breakdown

To understand the electrical and mechanical self-healing behaviour of MGSBS, the 

microstructure evolution of the elastomers was considered.   Firstly, as characterised by 

dynamic mechanical thermal analysis (DMTA), there are two steps in the storage modulus 

for SBS, Figure 8a, corresponding to the two glass transition temperatures (Tg’s) of the 

two phases –the polybutadiene block and the polystyrene block. Below Tg, the storage 

modulus for MGSBS (98.5%) is higher than SBS, reflecting a stronger intermolecular 

interaction among the MGSBS polymer chains than SBS, making the modified elastomer 

more rigid. For MGSBS (98.5%) there is a single strong peak for the glass transition 

temperature and several small peaks in the polybutadiene glass transition region due to 
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the polymer chains that have been affected by chain scission or have a lower grafting of 

methyl thioglycolate. From the mechanical tan δ results in Figure 8b, the Tg’s occur as a 

sharp peak at -83 °C for polybutadiene and a broad peak at 97 °C for the polystyrene 

block. In comparison, MGSBS (98.5%) has only one strong decrease in the storage 

modulus, resulting in a Tg of -22 °C. The single transition temperature implies that the 

grafting of methyl thioglycolate groups has made the two polymer phases compatible.

The macromolecular interaction of MGSBS was further characterised by UV-vis 

spectroscopy. Both SBS and MGSBS (98.5%) in the solution state in dichloromethane 

(DCM) and in the solid state were compared. In the solution state in DCM shown in Figure 

S7, clear peaks for the π-π* transitions from free styrene and π-stacking styrene groups 

are clearly visible for both SBS and MGSBS. However, the π-π* transition for free styrene 

blue shifts by 15 nm to 247 nm because of the chemical modification. This implies that 

chemical modification with methyl thioglycolate in the butadiene section results in an 

interaction with the styrene block of the polymer, at least in the solution state. In the solid-

state UV-vis spectra in Figure 8c, the π-π* transition for π-stacking styrene had 

dramatically increased in its relative intensity to the free styrene transition, when 
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compared to the spectra recorded in the solution state. This peak in MGSBS however 

was blue-shifted 20 nm compared to SBS. In addition, the free styrene π-π* transition 

peak is also blue-shifted in the solid material from 266 nm to 248 nm. This blue shift 

indicates that there is an increase in the transition energy for the styrene groups because 

of weak hydrogen bonding interactions with the aromatic electron density.31 The peak at 

205 nm is the transition from the alkenes on the butadiene block, which is not seen after 

chemical modification.32

Understanding the nature of self-healing was further explored through FT-IR and 

Raman spectroscopy. Shifts in the wavenumbers of peaks compared to the starting 

materials, or as grafting increases, implies that a change of environment is taking place 

and provides an insight into the interactions involved. In both FT-IR and Raman, Figure 

1b and Figure 8d, the main peak shifts occur through C-O, C=O and C-C bonds on 

increasing the grafting concentration of methyl thioglycolate. In FT-IR, a 6 cm-1 and 13 

cm-1 red shift was observed for both C-O bonds on methyl thioglycolate and also a 4 cm-1 

red shift for the C=O on the ester. Likewise, a 2 cm-1 red shift was also observed for the 

C-C aromatic bond of styrene. 
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A 2 cm-1 shift is normally attributed to variance in the equipment, however, in this case 

the same 2 cm-1 drop for the C-C aromatic bond is also observed in the Raman spectrum. 

This indicates that the C-C bonds have become slightly elongated. Furthermore, the 

Raman spectra also show a 4 cm-1 red shift for C=O bonds and a 9 and 12 cm-1 red shift 

for both C-O bonds on methyl thioglycolate. C-H shifts are observed due to grafting of 

methyl thioglycolate. Overall, the elongation of the C-C aromatic bonds of styrene and the 

ester group of methyl thioglycolate bonds suggest that these are the interacting groups 

that lead to self-healing. Specifically, self-healing is likely to originate from either the δ+ 

CH2 or δ+ CH3 on either side of the ester accepting electron charge from the δ- centre of 

the benzene ring. As the benzene ring is more stabilised, the δ+ HC-CH aromatic bonds 

experience a weaker pull from the centre, hence the slightly longer bond length. Similar 

interactions to this are seen in nature that influence the secondary structure of proteins.33

The increased intermolecular interactions and phase compatibility can influence the 

polymer morphology evolution. As illustrated by small angle x-ray scattering (SAXS) in 

Figure 9a, the 2D SAXS image shows that SBS displays partial long-range order in one 

direction before modification. The 1D spectra for SBS also shows strong q peaks at √3 
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and √7 and a small hump at √4. This demonstrates that SBS has hexagonally arranged 

cylindrical styrene microdomains in a butadiene continuous phase.34 In contrast, the 2D 

image of MGSBS clearly shows the solid and homogeneous intensity of the scattering, 

indicating a spherical morphology. From the 1D graph, there is a small secondary q-peak 

at √3 suggesting that the morphology of MGSBS (98.5%) is misaligned spheres rather 

than spheres or cylinders due to the lack of q-peaks at √2, √4 and √7.

This transition from cylindrical morphology to the more disordered misaligned spherical 

morphology demonstrates a higher degree of mixing of the two polymer blocks or an 

increase in compatibility, which further supports the DMTA results in Figure 8. 

The phase morphology of SBS before and after modification to MGSBS were observed 

by AFM and shown in Figure 9b. The SBS phase image shows hard styrene cylinders in 

dark and butadiene phase in light colour, showing a clear phase separation between the 

two phases. The height distribution graph for SBS shows two peaks for the two phases, 

Figure 9b. In comparison, for MGSBS, the cylindrical styrene phase has disappeared to 

show almost one uniform phase. The height distribution graph also shows only a single 

peak for one phase. The only existence of the styrene phase is the disordered 
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arrangement of dark dots, small fragments that remain uncompatiblised by the ester. The 

few styrene spheres remaining give rise to the small q peak at √3 in the SAXS 1D graphs. 

Therefore, the vast majority of polystyrene block has been compatibilised by the 

chemical modification, resulting the two distinct phases with hexagonally arranged 

polystyrene cylinders in a polybutadiene matrix transforming into a single disordered 

polymer phase with a small quantity of disordered polystyrene containing spheres. 

The above characterisation results indicate that the mechanism of self-healing of 

MGSBS is as a result of an interaction between the δ- styrene ring and the δ+ groups on 

either side of the ester of methyl thioglycolate. The transition to a more disordered phase 

morphology demonstrates the increased compatibility between the two phases to allow 

some phase mixing. Electrical breakdown of the elastomer occurs when a pinhole is 

formed due to the abrupt increase of the local strain and resultant mechanical rupture.1, 

35 In the case of MGSBS, the intermolecular forces between the polymer chains have 

reunited the surfaces together to recover the breakdown strength and mechanical 

properties. 
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4. Conclusions

A styrene-butadiene-styrene (SBS) was chemically modified using thiol-ene ‘click’ 

chemistry to graft methyl thioglycolate (MG) to the polymer backbone, where a high 

grafting ratio (98 mol%) of MGSBS were obtained via a one-step method.  Detailed 

characterisation of the materials produced by this new approach provides the first report 

on the unexpected and remarkable self-healing capability of MGSBS to self-heal electrical 

and mechanical damage. A tensile strength recovery  up to 25.4% and elongation at break 

recovery of 20.9% after three days was observed. MGSBS (68.3%) and MGSBS (98.5%) 

could be healed with no external stimuli and was simply performed by pushing two pieces 

together, yielding an instantaneous healing. 

Characterisation indicated that the self-healing ability was caused by CH/π interactions 

between the methyl thioglycolate ester and the proton accepting aromatic system of 

styrene.  At a low methyl thioglycolate grafting density, these interactions occurred 

intramolecularly and had a decreased chain entanglement when compared with SBS, 

resulting in a lower strength material without self-healing properties.  At increased grafting 

levels, MGSBS displayed a strong self-healing ability and SAXS data indicated a change 
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in morphology of SBS from hexagonally arranged styrene cylinders to disordered 

spheres, showing a compatibilisation between the two blocks of SBS. 

Grafting of MG group of 98% to SBS has reduced the Young’s modulus by 94%, 

reduced the viscous loss by up to 80% at 300% elongation. Impedance spectroscopy 

measurements of MGSBS (98.5%) showed an increase in the relative permittivity of the 

elastomer from 2.8 to 11.4 at 103 Hz and maintained a low tan δ of 9 × 10-3. These 

improvements led to improved actuation whereby MGSBS (98.5%) showed superior 

actuation performance compared to SBS, with an increase in area of 17% at an electric 

field of 250 kV cm-1 and exhibited an actuation force of 0.12 N upon application of a 400 

kV cm-1 electric field, four times greater than SBS. The electrical breakdown for MGSBS 

(98.5%) recovered to 15% of its original breakdown strength after 24 hours of self-healing 

after breaking down at 200 kV cm-1. Overall, this work introduces a new class of self-

healing dielectric elastomers using interactions typically seen in nature and results in a 

material which not only has excellent mechanical and electrical performances for 

actuation and energy generation applications but an increased longevity of life due to the 

unexpected self-healing nature. 
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Figure 1. (a) 1H NMR of MGSBS: grafting 53.7 % @5 mins UV, 68.3 % @ 10 mins UV 

and 98.5 % @20 mins UV; (b) FT-IR spectra of SBS and MGSBS (98.5%).
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Figure 2. a) Stress-strain curves of SBS and MGSBS (98.5%); b) stress-softening 

behaviour of SBS at different elongations after 1 cycle and 5 cycles. c) stress-softening 

behaviour of MGSBS (98.5%) after 1 cycle and after 5 cycles. d) hysteresis energy loss 

for SBS and MGSBS after 5 cycles.
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Figure 3. a) Stress vs time curve and b) change in stress compared to initial stress of 

SBS and MGSBS at grafting ratios of 53.7%, 68.3% and 98.5% 
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Figure 4. a) Relative permittivity, b) tan δ, c) AC conductivity of SBS and MGSBS (98.5%). 
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Figure 5. Actuation strain measurement in MGSBS at (a) 0 kV and (b) 5 kV shows the 

radial strain of approximately 13% and the areal strain of 17%. In comparison, the 

actuation strain measurement of SBS at 4 kV shows a radial strain of 1.2% and the areal 

strain of 1.4%. (Electric breakdown occurred immediately after voltage application in SBS 

at 5 kV; (c) Actuation force measurement in the MGSBS and SBS. At 8 kV, the MGSBS 

generates 0.12 N while the SBS generates 0.03 N.
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Figure 6. a) Tensile strength recovery; b) elongation at break recovery of MGSBS (98.5%) 

native and reused.
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Figure 7. (a) AC conductivity (b) capacitance and (c) phase angle for MGSBS (98.5%) 

prior to breakdown, directly after breakdown and 24 hours after breakdown.
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Figure 8. Dynamic mechanical thermal analysis of SBS and MGSBS (98.5%), (a) storage 

modulus, b) mechanical tan δ for the elastomers; c) solid state UV-Vis spectra of SBS 

and MGSBS (98.5%) and d) Raman spectra of SBS and MGSBS (98.5%).
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Figure 9. (a) 1D SAXS and 2D SAXS of SBS and MGSBS (98.5%); (b) AFM height 

distribution and phase morphologies of SBS and MGSBS (98.5%) 

ASSOCIATED CONTENT

Supporting Information

 S1: Electrode configurations for (a) dielectric elastomer actuation in strain after pre-strain 

and setup for actuation strain measurement; (b) dielectric elastomer actuation in force 

(a)

(b)
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prior to pre-strain and setup for actuation force measurement; (c) A 60 seconds voltage 

input sequence for actuation in strain.

 S2: 1H NMR of SBS.

 S3: Phase angle of SBS and MGSBS (98.5%).

 S4: a) tensile strength recovery; b) elongation at break recovery of MGSBS with 

grafting ratios of 68.3 and 98.5%.

 S5: a) tensile strength recovery; b) elongation at break recovery of MGSBS (98.5%) self-

healed at 20 °C and 37 °C.

 S6: Polarisation – electric field response (a) as received material (b) 24 hours after 

breakdown and applied pressure up to 1 kV.

 S7: UV-Vis spectrum of SBS and MGSBS (98.5%) in solution state using DCM.
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