10 research outputs found

    Fluoride adsorption onto an acid treated lateritic mineral from Kenya: Equilibrium studies

    Get PDF
    Adsorption of fluoride (F) ions from water using acid treated lateritic mineral (LM-1) from Kenya was studied by batch experiments. The effect of acid-treatment of adsorbent and change in temperature, mass of LM-1, pH and selected competing ions was evaluated. The adsorption process was strongly influenced by temperature, pH and adsorbent dosage. The percentage F removal increased the presence of the nitrate and the chlorate ions but decreased the presence of sulphates, chloride and phosphate ions. Adsorption isotherms were classified according to Giles’ classification and the adsorption data validated using Langmuir and Freundlich isotherms. The data correlated to both the Langmuir and Freundlich isotherms although the data fit to the Freundlich model was somehow better. This showed that F adsorption onto LM-1 followed a mixed adsorption mechanism in which physisorption reactions involving intra-particle diffusion of F into mesoporous sites in LM-1 became increasingly important at higher concentrations and temperatures whereas ion-exchange mechanism involving surface OH- appear to dominate at low surface coverage in more alkaline conditions. With maximum adsorption capacity of 10.5 mg/g, LM-1 could be used to remove F water.Key words: Equilibrium analysis, fluoride adsorption, Langmuir and Freundlich isotherms, Lateritic mineral adsorbent, low-cost adsorbents

    Equilibrium Studies of Fluoride Adsorption onto a Ferric Poly 12mineral from Kenya

    Get PDF
    African countries along the Great Rift Valley are among areas of the world where excess fluoride in water sources is a major public health problem. In this work, the removal of fluoride (F) from water solutions using a ferric poly-mineral (FPM) from Kenya was therefore studied using batch adsorption experiments. The effect of change in solution pH, temperature, initial concentration of F, mass of FPM, contact time and presence of various competing ions on F adsorption onto FPM was evaluated. Adsorption isotherms were then applied to the adsorption data to characterize and establish the adsorption capacity of the mineral. The adsorption of F onto FPM was found to be a fast process and, at 1000 mg/L initial F concentration at pH 3.32 and 293 K and using 0.2 g/mL adsorbent dosage, over 90% F removal from solution could be achieved in 30 min. Based on Giles system of classification of adsorption isotherms, F adsorption isotherm conformed to L4 Langmuir-type isotherms. This indicated that FPM is composed of a heterogeneous surface consisting of sites which, during adsorption, filled-up with F ions in succession. The adsorption data also correlated to Langmuir and Freundlich models indicating that F adsorption onto FPM was a mixed process involving chemisorption onto surface sites followed by gradual intra-particle penetration of F into mesoporous structure of the mineral. High mean Langmuir adsorption capacity of 10.8 mg/g, indicate that the mineral could be of use as an inexpensive substrate for the removal of F from aqueous streams

    A bibliometric analysis of drinking water research in Africa

    Get PDF
    A total of 1 917 publications of drinking water research in Africa from 1991 to 2013 were identified from the data hosted in online version of SCI-Expanded, Thomson Reuters Web of Science, for bibliometric analysis. The analysis included publication output, distribution of keywords, journals and subject areas, and performances of countries, institutions, and authors. Citation trends and highly-cited publications are also reported. We found that the publication output of related documents increased over the entire period of study. The results showed that ‘water’, ‘drinking water’, and ‘oxidative stress’ were the most frequent terms in publication titles, authors’ keywords and KeyWords Plus. The top three subject areas were ‘water resources’, ‘environmental science’, and ‘environmental and occupational public health’. The ten most productive institutions were located in South Africa and Egypt, and the University of Pretoria was the overall most productive institution. Thus, a quarter of all of the articles published were from South Africa. It was found that articles became increasingly collaborative with greater numbers of authors, page counts and bibliographies. More than half of the internationally collaborative articles were co-authored with researchers from Europe. French and US institutions contributed to the highest number of collaborative articles.Keywords: Africa, bibliometric review, drinking water, publications, research collaborations, water researc

    Fluoride distribution in selected foodstuffs from Nakuru County, Kenya, and the risk factors for its human overexposure

    No full text
    Abstract Critical data on the impacts of fluoride (F) in food systems along the Eastern Africa Rift Valley System (EARS) is needed for public health risk assessment and for the development of strategies for ameliorating its deleterious effects among the affected communities. Long-term F overexposure causes dental and skeletal fluorosis, and leads to neurotoxicity, which impacts several important body functions. Investigating F exposure pathways is of essence to inform and safeguard public health of the affected communities. The current study assessed the F levels in potatoes (Solanum tuberosum L.), beans (Phaseolus vulgaris L.) and garden peas (Possum sativa) from Nakuru County, Kenya, by potentiometric analysis using F ion-selective electrodes. It then evaluated the risk factors for excessive human exposure to F through contaminated foodstuffs. The mean F levels in the potatoes (8.50 ± 4.70 mg/kg), beans (8.02 ± 4.12 mg/kg) and peas (4.99 ± 1.25 mg/kg) exceeded recommended dietary allowances (RDA) level of 4 mg/kg endorsed by US Institute of Medicine for the different categories of people. The F distribution trends in beans and potatoes reflected the environmental patterns of F contamination of the study area but the spatial extent Fin the peas indicated existence of partial resistance of the pea plants to environmental F uptake. The results indicated that both the beans and the potatoes were more liable to accumulating greater amounts of F from the environment than garden peas and that all the three foodstuffs contained high F levels that posed greater risk of F overexposure and its deleterious impacts among the young children, male populations, and in people of greater body weight and high physical activity levels

    Equilibrium Studies of Fluoride Adsorption onto a Ferric Poly−mineral from Kenya

    Get PDF
    African countries along the Great Rift Valley are among areas of the world where excess fluoride in water sources is a major public health problem. In this work, the removal of fluoride (F) from water solutions using a ferric poly-mineral (FPM) from Kenya was therefore studied using batch adsorption experiments. The effect of change in solution pH, temperature, initial concentration of F, mass of FPM, contact time and presence of various competing ions on F adsorption onto FPM was evaluated. Adsorption isotherms were then applied to the adsorption data to characterize and establish the adsorption capacity of the mineral. The adsorption of F onto FPM was found to be a fast process and, at 1000 mg/L initial F concentration at pH 3.32 and 293 K and using 0.2 g/mL adsorbent dosage, over 90% F removal from solution could be achieved in 30 min. Based on Giles system of classification of adsorption isotherms, F adsorption isotherm conformed to L4 Langmuir-type isotherms. This indicated that FPM is composed of a heterogeneous surface consisting of sites which, during adsorption, filled-up with F ions in succession. The adsorption data also correlated to Langmuir and Freundlich models indicating that F adsorption onto FPM was a mixed process involving chemisorption onto surface sites followed by gradual intra-particle penetration of F into mesoporous structure of the mineral. High mean Langmuir adsorption capacity of 10.8 mg/g, indicate that the mineral could be of use as an inexpensive substrate for the removal of F from aqueous streams

    <b>Kinetics and thermodynamics of aqueous Cu(II) adsorption on heat regenerated spent bleaching earth</b>

    Get PDF
    This study investigated the kinetics and thermodynamics of copper(II) removal from aqueous solutions using spent bleaching earth (SBE). The spent bleaching earth, a waste material from edible oil processing industries, was reactivated by heat treatment at 370 <sup>o</sup>C after residual oil extraction in excess methyl-ethyl ketone. Copper adsorption tests were carried out at room temperature (22±3 <sup>o</sup>C) using 5.4 x 10<sup>-3</sup>C M metal concentrations. More than 70% metal removal was recorded in the first four hours although adsorption continued to rise to within 90% at 42 hours. The pH, adsorbent dosage and initial concentrations were master variables affecting RSBE adsorption of Cu(II) ions. The adsorption equilibrium was adequately described by the Dubinin-Radushkevich (D-R) and the Temkin isotherms and the maximum sorption capacity derived from the D-R isotherm was compared with those of some other low cost adsorbents. The adsorption process was found to follow Lagergren Pseudo-second order kinetics complimented by intra-particle diffusion kinetics at prolonged periods of equilibration. Based on the D-R isotherm adsorption energy and the thermodynamic adsorption free energy ∆G, it was suggested that the process is spontaneous and based on electrostatic interactions between the metal ions and exposed active sites in the adsorbent surface
    corecore