576 research outputs found

    Neutrino absorption by hot nuclei in supernova environments

    Full text link
    Using the thermal quasiparticle random phase approximation, we study the process of neutrino and antineutrino capture on hot nuclei in supernova environments. For the sample nuclei 56^{56}Fe and 82^{82}Ge we perform a detailed analysis of thermal effects on the strength distribution of allowed Gamow-Teller transitions which dominate low-energy charged-current neutrino reactions. The finite temperature cross sections are calculated taking into account the contributions of both allowed and forbidden transitions. The enhancement of the low-energy cross sections is explained by considering thermal effects on the GT±_\pm strength. For 56^{56}Fe we compare the calculated finite-temperature cross sections with those obtained from large-scale shell-model calculations.Comment: Minor revisions according to referee's recomendation

    Analytic approach to nuclear rotational states: The role of spin - A minimal model -

    Full text link
    We use a simple field theory model to investigate the role of the nucleon spin for the magnetic sum rules associated with the low-lying collective scissors mode in deformed nuclei. Various constraints from rotational symmetry are elucidated and discussed. We put special emphasis on the coupling of the spin part of the M1 operator to the low lying collective modes, and investigate how this coupling changes the sum rules.Comment: 15 pages, 4 figure

    Inelastic neutrino scattering off hot nuclei in supernova environments

    Full text link
    We study inelastic neutrino scattering off hot nuclei for temperatures relevant under supernova conditions. The method we use is based on the quasiparticle random phase approximation extended to finite temperatures within the thermo field dynamics (TQRPA). The method allows a transparent treatment of upward and downward transitions in hot nuclei, avoiding the application of Brink's hypothesis. For the sample nuclei 56^{56}Fe and 82^{82}Ge we perform a detailed analysis of thermal effects on the strength distributions of allowed Gamow-Teller (GT) transitions which dominate the scattering process at low neutrino energies. For 56^{56}Fe and 82^{82}Ge the finite temperature cross-sections are calculated by taking into account the contribution of allowed and forbidden transitions. The observed enhancement of the cross-section at low neutrino energies is explained by considering thermal effects on the GT strength. For 56^{56}Fe we compare the calculated cross-sections to those obtained earlier from a hybrid approach that combines large-scale shell-model and RPA calculations.Comment: 12 pages, 9 figure

    Excitation of the electric pygmy dipole resonance by inelastic electron scattering

    Full text link
    To complete earlier studies of the properties of the electric pygmy dipole resonance (PDR) obtained in various nuclear reactions, the excitation of the 1^- states in 140^{140}Ce by (e,e)(e,e') scattering for momentum transfers q=0.11.2q=0.1-1.2~fm1^{-1} is calculated within the plane-wave and distorted-wave Born approximations. The excited states of the nucleus are described within the Quasiparticle Random Phase Approximation (QRPA), but also within the Quasiparticle-Phonon Model (QPM) by accounting for the coupling to complex configurations. It is demonstrated that the excitation mechanism of the PDR states in (e,e)(e,e') reactions is predominantly of transversal nature for scattering angles θe90o180o\theta_e \approx 90^o-180^o. Being thus mediated by the convection and spin nuclear currents, the (e,e)(e,e') like the (γ,γ)(\gamma,\gamma') reaction, may provide additional information to the one obtained from Coulomb- and hadronic excitations of the PDR in (p,p)(p,p'), (α,α)(\alpha,\alpha'), and heavy-ion scattering reactions. The calculations predict that the (e,e)(e,e') cross sections for the strongest individual PDR states are in general about three orders of magnitude smaller as compared to the one of the lowest 21+2^+_1 state for the studied kinematics, but that they may become dominant at extreme backward angles.Comment: Prepared for the special issue of EPJA on the topic "Giant, Pygmy, Pairing Resonances and related topics" dedicated to the memory of Pier Francesco Bortigno

    Multiple Scales in the Fine Structure of the Isoscalar Giant Quadrupole Resonance in ^{208}Pb

    Full text link
    The fine structure of the isoscalar giant quadrupole resonance in ^{208}Pb, observed in high-resolution (p,p') and (e,e') experiments, is studied using the entropy index method. In a novel way, it enables to determine the number of scales present in the spectra and their magnitude. We find intermediate scales of fluctuations around 1.1 MeV, 460 keV and 125 keV for an excitation energy region 0 - 12 MeV. A comparison with scales extracted from second RPA calculations, which are in good agreement with experiment, shows that they arise from the internal mixing of collective motion with two particle-two hole components of the nuclear wavefunction.Comment: 14 pages including 6 figures (to be published in Phys. Lett. B

    Thermal QRPA with Skyrme interactions and supernova neutral-current neutrino-nucleus reactions

    Full text link
    The Thermal Quasiparticle Random-Phase Approximation is combined with the Skyrme energy density functional method (Skyrme-TQRPA) to study the response of a hot nucleus to an external perturbation. For the sample nuclei, 56^{56}Fe and 82^{82}Ge, the Skyrme-TQRPA is applied to analyze thermal effects on the strength function of charge-neutral Gamow-Teller transitions which dominate neutrino-nucleus reactions at Eν20E_\nu \lesssim 20~MeV. For the relevant supernova temperatures we calculate the cross sections for inelastic neutrino scattering. We also apply the method to examine the rate of neutrino-antineutrino pair emission by hot nuclei. The cross sections and rates are compared with those obtained earlier from the TQRPA calculations based on the phenomenological Quasiparticle-Phonon Model Hamiltonian. For inelastic neutrino scattering on 56^{56}Fe we also compare the Skyrme-TQRPA results to those obtained earlier from a hybrid approach that combines shell-model and RPA calculations.Comment: Minor revisions according to referee's recomendation

    Fluctuations and Correlations of Conserved Charges in the (2+1)(2+1) Polyakov Quark Meson Model

    Full text link
    We consider the (2+1)(2+1) flavor Polyakov Quark Meson Model and study the fluctuations (correlations) of conserved charges upto sixth (fourth) order. Comparison is made with lattice data wherever available and overall good qualitative agreement is found, more so for the case of the normalised susceptibilities. The model predictions for the ratio of susceptibilities go to that of an ideal gas of hadrons as in Hadron Resonance Gas Model at low temperatures while at high temperature the values are close to that of an ideal gas of massless quarks. Our study provides a strong basis for the use of PQM as an effective model to understand the topology of the QCD phase diagram.Comment: modified text, version accepted for publication in PR

    Gamow-Teller strength distributions at finite temperatures and electron capture in stellar environments

    Full text link
    We propose a new method to calculate stellar weak-interaction rates. It is based on the Thermo-Field-Dynamics formalism and allows the calculation of the weak-interaction response of nuclei at finite temperatures. The thermal evolution of the GT+_+ distributions is presented for the sample nuclei 54,56^{54, 56}Fe and ~76,78,80^{76,78,80}Ge. For Ge we also calculate the strength distribution of first-forbidden transitions. We show that thermal effects shift the GT+_+ centroid to lower excitation energies and make possible negative- and low-energy transitions. In our model we demonstrate that the unblocking effect for GT+_+ transitions in neutron-rich nuclei is sensitive to increasing temperature. The results are used to calculate electron capture rates and are compared to those obtained from the shell model.Comment: 16 pages, 9 figure
    corecore