9,422 research outputs found

    Use of personal child health records in the UK: findings from the millennium cohort study.

    Get PDF
    OBJECTIVES: The personal child health record (PCHR) is a record of a child's growth, development, and uptake of preventive health services, designed to enhance communication between parents and health professionals. We examined its use throughout the United Kingdom with respect to recording children's weight and measures of social disadvantage and infant health. DESIGN: Cross sectional survey within a cohort study. SETTING: UK. PARTICIPANTS: Mothers of 18,503 children born between 2000 and 2002, living in the UK at 9 months of age. MAIN OUTCOME MEASURES: Proportion of mothers able to produce their child's PCHR; proportion of PCHRs consulted containing record of child's last weight; effective use of the PCHR (defined as production, consultation, and child's last weight recorded). RESULTS: In all, 16,917 (93%) mothers produced their child's PCHR and 15,138 (85%) mothers showed effective use of their child's PCHR. Last weight was recorded in 97% of PCHRs consulted. Effective use was less in children previously admitted to hospital, and, in association with factors reflecting social disadvantage, including residence in disadvantaged communities, young maternal age, large family size (four or more children; incidence rate ratio 0.87; 95% confidence interval 0.83 to 0.91), and lone parent status (0.88; 0.86 to 0.91). CONCLUSIONS: Use of the PCHR is lower by women living in disadvantaged circumstances, but overall the record is retained and used by a high proportion of all mothers throughout the UK in their child's first year of life. PCHR use is endorsed in the National Service Framework for Children and has potential benefits which extend beyond the direct care of individual children

    A method for computation of vibration modes and frequencies of orthotropic thin shells of revolution having general meridional curvature

    Get PDF
    Finite element method for computing natural frequencies and mode shapes of thin shells of revolutio

    Vibration characteristics of ring-stiffened orthotropic shells of revolution

    Get PDF
    Computer program solves vibration modes and frequencies of thin shells of revolution having general meridional curvature and orthotropic elastic properties in order to evaluate the dynamic behavior of structures with thin shelled components

    Detection of a variable ultra-fast outflow in the Narrow Line Seyfert 1 galaxy PG 1448+273

    Get PDF
    Relativistically blueshifted absorption features of highly ionised ions, the so-called ultra-fast outflows (UFOs), have been detected in the X-ray spectra of a number of accreting supermassive black holes. If these features truly originate from accretion disc winds accelerated to more than 10 per cent of the speed of light, their energy budget is very significant and they can contribute to or even drive galaxy-scale feedback from active galactic nuclei (AGN). However, the UFO spectral features are often weak due to high ionisation of the outflowing material, and the inference of the wind physical properties can be complicated by other spectral features in AGN such as relativistic reflection. Here we study a highly accreting Narrow Line Seyfert 1 galaxy PG 1448+273. We apply an automated, systematic routine for detecting outflows in accreting systems and achieve an unambiguous detection of a UFO in this AGN. The UFO absorption is observed in both soft and hard X-ray bands with the XMM-Newton observatory. The velocity of the outflow is (26900 +- 600) km/s (~0.09c), with an ionisation parameter of log ({\xi} / erg cm s^-1)=4.03_{-0.08}^{+0.10} and a column density above 10^23 cm^-2. At the same time, we detect weak warm absorption features in the spectrum of the object. Our systematic outflow search suggests the presence of further multi-phase wind structure, but we cannot claim a significant detection considering the present data quality. The UFO is not detected in a second, shorter observation with XMM-Newton, indicating variability in time, observed also in other similar AGN.Comment: Accepted for publication in MNRAS. 14 pages, 11 figures, 1 tabl

    Basement and Regional Structure Along Strike of the Queen Charlotte Fault in the Context of Modern and Historical Earthquake Ruptures

    Get PDF
    The Queen Charlotte fault (QCF) is a dextral transform system located offshore of southeastern Alaska and western Canada, accommodating similar to 4.4 cm/yr of relative motion between the Pacific and North American plates. Oblique convergence along the fault increases southward, and how this convergence is accommodated is still debated. Using seismic reflection data, we interpret offshore basement structure, faulting, and stratigraphy to provide a geological context for two recent earthquakes, an M-w 7.5 strike-slip event near Craig, Alaska, and an M-w 7.8 thrust event near Haida Gwaii, Canada. We map downwarped Pacific oceanic crust near 54 degrees N, between the two rupture zones. Observed downwarping decreases north and south of 54 degrees N, parallel to the strike of the QCF. Bending of the Pacific plate here may have initiated with increased convergence rates due to a plate motion change at similar to 6 Ma. Tectonic reconstruction implies convergence-driven Pacific plate flexure, beginning at 6 Ma south of a 10 degrees bend the QCF (which is currently at 53.2 degrees N) and lasting until the plate translated past the bend by similar to 2 Ma. Normal-faulted approximately late Miocene sediment above the deep flexural depression at 54 degrees N, topped by relatively undeformed Pleistocene and younger sediment, supports this model. Aftershocks of the Haida Gwaii event indicate a normal-faulting stress regime, suggesting present-day plate flexure and underthrusting, which is also consistent with reconstruction of past conditions. We thus favor a Pacific plate underthrusting model to initiate flexure and accommodation space for sediment loading. In addition, mapped structures indicate two possible fault segment boundaries along the QCF at 53.2 degrees N and at 56 degrees N.USGS Earthquake Hazards External Grants ProgramNational Earthquake Hazards Reduction ProgramUTIG Ewing/Worzel FellowshipInstitute for Geophysic

    X-ray Lags in PDS 456 Revealed by Suzaku Observations

    Full text link
    X-ray reverberation lags from the vicinity of supermassive black holes have been detected in almost 30 AGN. The soft lag, which is the time delay between the hard and soft X-ray light curves, is usually interpreted as the time difference between the direct and reflected emission, but is alternatively suggested to arise from the direct and scattering emission from distant clouds. By analysing the archival Suzaku observations totalling an exposure time of ~ 770 ks, we discover a soft lag of 10±3.410\pm3.4 ks at 9.58×10−69.58\times10^{-6} Hz in the luminous quasar PDS 456, which is the longest soft lag and lowest Fourier frequency reported to date. In this study, we use the maximum likelihood method to deal with non-continuous nature of the Suzaku light curves. The result follows the mass-scaling relation for soft lags, which further supports that soft lags originate from the innermost areas of AGN and hence are best interpreted by the reflection scenario. Spectral analysis has been performed in this work and we find no evidence of clumpy partial-covering absorbers. The spectrum can be explained by a self-consistent relativistic reflection model with warm absorbers, and spectral variations over epochs can be accounted for by the change of the continuum, and of column density and ionization states of the warm absorbers.Comment: accepted for publication in MNRA

    The hard X-ray perspective on the soft X-ray excess

    Get PDF
    The X-ray spectra of many active galactic nuclei (AGN) exhibit a `soft excess' below 1keV, whose physical origin remains unclear. Diverse models have been suggested to account for it, including ionised reflection of X-rays from the inner part of the accretion disc, ionised winds/absorbers, and Comptonisation. The ionised reflection model suggests a natural link between the prominence of the soft excess and the Compton reflection hump strength above 10keV, but it has not been clear what hard X-ray signatures, if any, are expected from the other soft X-ray candidate models. Additionally, it has not been possible up until recently to obtain high-quality simultaneous measurements of both soft and hard X-ray emission necessary to distinguish these models, but upcoming joint XMM-NuSTAR programmes provide precisely this opportunity. In this paper, we present an extensive analysis of simulations of XMM+NuSTAR observations, using two candidate soft excess models as inputs, to determine whether such campaigns can disambiguate between them by using hard and soft X-ray observations in tandem. The simulated spectra are fit with the simplest "observer's model" of a black body and neutral reflection to characterise the strength of the soft and hard excesses. A plot of the strength of the hard excess against the soft excess strength provides a diagnostic plot which allows the soft excess production mechanism to be determined in individual sources and samples using current state-of-the-art and next generation hard X-ray enabled observatories. This approach can be straightforwardly extended to other candidate models for the soft excess.Comment: 12 pages, 11 figures, accepted for publication in ApJ. Added reference
    • …
    corecore