337 research outputs found

    The Ultra-Fast Outflow of WKK 4438: Suzaku and NuSTAR X-ray Spectral Analysis

    Get PDF
    Previous X-ray spectral analysis has revealed an increasing number of AGNs with high accretion rates where an outflow with a mildly relativistic velocity originates from the inner accretion disk. Here we report the detection of a new ultra-fast outflow (UFO) with a velocity of vout=0.3190.008+0.005cv_{\rm out}=0.319^{+0.005}_{-0.008}c in addition to a relativistic disk reflection component in a poorly studied NLS1 WKK~4438, based on archival \nustar and \suzaku observations. The spectra of both \suzaku and \nustar observations show an Fe~\textsc{xxvi} absorption feature and the \suzaku data also show evidence for an Ar~\textsc{xviii} with the same blueshift. A super-solar argon abundance (ZAr>6ZZ^{\prime}_{\rm Ar}>6Z_{\odot}) and a slight iron over-abundance (ZFe=2.62.0+1.9ZZ^{\prime}_{\rm Fe}=2.6^{+1.9}_{-2.0}Z_{\odot}) are found in our spectral modelling. Based on Monte-Carlo simulations, the detection of the UFO is estimated to be around at 3σ\sigma significance. The fast wind most likely arises from a radius of 20rg\geq20r_g away from the central black hole. The disk is accreting at a high Eddington ratio (Lbol=0.40.7LEddL_{\rm bol}=0.4-0.7L_{\rm Edd}). The mass outflow rate of the UFO is comparable with the disk mass inflow rate (M˙out>30%M˙in\dot M_{\rm out}>30\%\dot M_{\rm in}), assuming a maximum covering factor. The kinetic power of the wind might not be high enough to have influence in AGN feedback (E˙wind/Lbol35%\dot E_{\rm wind}/L_{\rm bol}\approx 3-5\%) due to a relatively small column density (124+9×102212^{+9}_{-4}\times10^{22}~cm2^{-2}). However note that both the inferred velocity and the column density could be lower limits owing to the low viewing angle (i=232+3i=23^{+3}_{-2}^{\circ}).Comment: 7 pages, 3 figures, accepted by MNRA

    A Rapidly Spinning Black Hole Powers the Einstein Cross

    Get PDF
    Observations over the past 20 years have revealed a strong relationship between the properties of the supermassive black hole (SMBH) lying at the center of a galaxy and the host galaxy itself. The magnitude of the spin of the black hole will play a key role in determining the nature of this relationship. To date, direct estimates of black hole spin have been restricted to the local Universe. Herein, we present the results of an analysis of \sim 0.5 Ms of archival Chandra observations of the gravitationally lensed quasar Q 2237+305 (aka the "Einstein-cross"), lying at a redshift of z = 1.695. The boost in flux provided by the gravitational lens allows constraints to be placed on the spin of a black hole at such high redshift for the first time. Utilizing state of the art relativistic disk reflection models, the black hole is found to have a spin of a=0.740.03+0.06a_* = 0.74^{+0.06}_{-0.03} at the 90% confidence level. Placing a lower limit on the spin, we find a0.65a_* \geq 0.65 (4σ\sigma). The high value of the spin for the 109 M\rm \sim 10^9~M_{\odot} black hole in Q 2237+305 lends further support to the coherent accretion scenario for black hole growth. This is the most distant black hole for which the spin has been directly constrained to date.Comment: 5 pages, 3 figures, 1 table, formatted using emulateapj.cls. Accepted for publication in ApJ

    Bright radio emission from an ultraluminous stellar-mass microquasar in M 31

    Get PDF
    A subset of ultraluminous X-ray sources (those with luminosities of less than 10^(40 ) erg s^(−1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ~5–20 M_⊙ , probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10^(39) erg s^(−1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission

    First Detection of Mid-Infrared Variability from an Ultraluminous X-Ray Source Holmberg II X-1

    Get PDF
    We present mid-infrared (IR) light curves of the Ultraluminous X-ray Source (ULX) Holmberg II X-1 from observations taken between 2014 January 13 and 2017 January 5 with the \textit{Spitzer Space Telescope} at 3.6 and 4.5 μ\mum in the \textit{Spitzer} Infrared Intensive Transients Survey (SPIRITS). The mid-IR light curves, which reveal the first detection of mid-IR variability from a ULX, is determined to arise primarily from dust emission rather than from a jet or an accretion disk outflow. We derived the evolution of the dust temperature (Td600800T_\mathrm{d}\sim600 - 800 K), IR luminosity (LIR3×104L_\mathrm{IR}\sim3\times10^4 L\mathrm{L}_\odot), mass (Md13×106M_\mathrm{d}\sim1-3\times10^{-6} M\mathrm{M}_\odot), and equilibrium temperature radius (Req1020R_\mathrm{eq}\sim10-20 AU). A comparison of X-1 with a sample spectroscopically identified massive stars in the Large Magellanic Cloud on a mid-IR color-magnitude diagram suggests that the mass donor in X-1 is a supergiant (sg) B[e]-star. The sgB[e]-interpretation is consistent with the derived dust properties and the presence of the [Fe II] (λ=1.644\lambda=1.644 μ\mum) emission line revealed from previous near-IR studies of X-1. We attribute the mid-IR variability of X-1 to increased heating of dust located in a circumbinary torus. It is unclear what physical processes are responsible for the increased dust heating; however, it does not appear to be associated with the X-ray flux from the ULX given the constant X-ray luminosities provided by serendipitous, near-contemporaneous X-ray observations around the first mid-IR variability event in 2014. Our results highlight the importance of mid-IR observations of luminous X-ray sources traditionally studied at X-ray and radio wavelengths.Comment: 9 page, 4 figures, 1 table, Accepted to ApJ Letter

    The Broadband X-Ray Spectrum of the X-Ray-obscured Type 1 AGN 2MASX J193013.80+341049.5

    Get PDF
    We present results from modeling the broadband X-ray spectrum of the Type 1 active galactic nucleus (AGN) 2MASX J193013.80+341049.5 using NuSTAR, Swift, and archival XMM-Newton observations. We find this source to be highly X-ray obscured, with column densities exceeding 10²³ cm⁻² across all epochs of X-ray observations, spanning an 8 yr period. However, the source exhibits prominent broad optical emission lines, consistent with an unobscured Type 1 AGN classification. We fit the X-ray spectra with both phenomenological reflection models and physically motivated torus models to model the X-ray absorption. We examine the spectral energy distribution of this source and investigate some possible scenarios to explain the mismatch between X-ray and optical classifications. We compare the ratio of reddening to X-ray absorbing column density (E_(B−V)/N_H) and find that 2MASX J193013.80+341049.5 likely has a much lower dust-to-gas ratio relative to the Galactic interstellar medium, suggesting that the broad line region itself could provide the source of extra X-ray obscuration, being composed of low-ionization, dust-free gas

    What is on Tap? The Role of Spin in Compact Objects and Relativistic Jets

    Get PDF
    We examine the role of spin in launching jets from compact objects across the mass scale. Our work includes a total of 37 Seyferts, 11 stellar-mass black holes, and 13 neutron stars. We find that when the Seyfert reflection lines are modeled with Gaussian line features (a crude proxy for inner disk radius and therefore spin), only a slight inverse correlation is found between the Doppler-corrected radio luminosity at 5 GHz (a proxy for jet power) and line width. When the Seyfert reflection features are fit with relativistically-blurred disk reflection models that measure spin, there is a tentative positive correlation between the Doppler-corrected radio luminosity and the spin measurement. Further, when we include stellar-mass black holes in the sample, to examine the effects across the mass scale, we find a slightly stronger correlation with radio luminosity per unit mass and spin, at a marginal significance (2.3 sigma confidence level). Finally, when we include neutron stars, in order to probe lower spin values, we find a positive correlation (3.3 sigma confidence level) between radio luminosity per unit mass and spin. Although tentative, these results suggest that spin may have a role in determining the jet luminosity. In addition, we find a slightly more significant correlation (4.4 sigma confidence level) between radio luminosity per Bolometric luminosity and spin, using our entire sample of black holes and neutrons stars. Again, although tentative, these relations point to the possibility that the mass accretion rate, i.e. Bolometric luminosity, is also important in determining the jet luminosity, in addition to spin. Our analysis suggests that mass accretion rate and disk or coronal magnetic field strength may be the "throttle" in these compact systems, to which the Eddington limit and spin may set the maximum jet luminosity that can be achieved.Comment: 14 pages, 13 Figures, ApJ Accepte

    Spectral and Timing Properties of IGR J17091-3624 in the Rising Hard State During its 2016 Outburst

    Get PDF
    We present a spectral and timing study of the NuSTAR and Swift observations of the black hole candidate IGR J17091-3624 in the hard state during its outburst in 2016. Disk reflection is detected in each of the NuSTAR spectra taken in three epochs. Fitting with relativistic reflection models reveals that the accretion disk is truncated during all epochs with Rin>10 rgR_{\rm in}>10~r_{\rm g}, with the data favoring a low disk inclination of 3040\sim 30^{\circ}-40^{\circ}. The steepening of the continuum spectra between epochs is accompanied by a decrease in the high energy cut-off: the electron temperature kTekT_{\rm e} drops from 64\sim 64 keV to 26\sim 26 keV, changing systematically with the source flux. We detect type-C QPOs in the power spectra with frequency varying between 0.131 Hz and 0.327 Hz. In addition, a secondary peak is found in the power spectra centered at about 2.3 times the QPO frequency during all three epochs. The nature of this secondary frequency is uncertain, however a non-harmonic origin is favored. We investigate the evolution of the timing and spectral properties during the rising phase of the outburst and discuss their physical implications.Comment: 11 pages, 9 figures, accepted by Ap
    corecore