6,709 research outputs found

    Quantum bit detector

    Full text link
    We propose and analyze an experimental scheme of quantum nondemolition detection of monophotonic and vacuum states in a superconductive toroidal cavity by means of Rydberg atoms.Comment: 4 pages, 3 figure

    Realization of a photonic CNOT gate sufficient for quantum computation

    Full text link
    We report the first experimental demonstration of a quantum controlled-NOT gate for different photons, which is classically feed-forwardable. In the experiment, we achieved this goal with the use only of linear optics, an entangled ancillary pair of photons and post-selection. The techniques developed in our experiment will be of significant importance for quantum information processing with linear optics.Comment: 4 pages 4 figures, sumbitted to PR

    Full characterization of a three-photon GHZ state using quantum state tomography

    Full text link
    We have performed the first experimental tomographic reconstruction of a three-photon polarization state. Quantum state tomography is a powerful tool for fully describing the density matrix of a quantum system. We measured 64 three-photon polarization correlations and used a "maximum-likelihood" reconstruction method to reconstruct the GHZ state. The entanglement class has been characterized using an entanglement witness operator and the maximum predicted values for the Mermin inequality was extracted.Comment: 3 pages, 3 figure

    Sequential Generation of Matrix-Product States in Cavity QED

    Get PDF
    We study the sequential generation of entangled photonic and atomic multi-qubit states in the realm of cavity QED. We extend the work of C. Schoen et al. [Phys. Rev. Lett. 95, 110503 (2005)], where it was shown that all states generated in a sequential manner can be classified efficiently in terms of matrix-product states. In particular, we consider two scenarios: photonic multi-qubit states sequentially generated at the cavity output of a single-photon source and atomic multi-qubit states generated by their sequential interaction with the same cavity mode.Comment: 11 page

    Experimental violation of a cluster state Bell inequality

    Full text link
    Cluster states are a new type of multiqubit entangled states with entanglement properties exceptionally well suited for quantum computation. In the present work, we experimentally demonstrate that correlations in a four-qubit linear cluster state cannot be described by local realism. This exploration is based on a recently derived Bell-type inequality [V. Scarani et al., Phys. Rev A 71, 042325 (2005)] which is tailored, by using a combination of three- and four-particle correlations, to be maximally violated by cluster states but not violated at all by GHZ states. We observe a cluster state Bell parameter of 2.59±0.082.59\pm 0.08, which is more than 7 standard deviations larger than the threshold of 2 imposed by local realism.Comment: 4 pages, 2 figure

    High fidelity transport of trapped-ion qubits through an X-junction trap array

    Full text link
    We report reliable transport of 9Be+ ions through a 2-D trap array that includes a separate loading/reservoir zone and an "X-junction". During transport the ion's kinetic energy in its local well increases by only a few motional quanta and internal-state coherences are preserved. We also examine two sources of energy gain during transport: a particular radio-frequency (RF) noise heating mechanism and digital sampling noise. Such studies are important to achieve scaling in a trapped-ion quantum information processor.Comment: 4 pages, 3 figures Updated to reduce manuscript to four pages. Some non-essential information was removed, including some waveform information and more detailed information on the tra

    Single microwave photon detection in the micromaser

    Full text link
    High efficiency single photon detection is an interesting problem for many areas of physics, including low temperature measurement, quantum information science and particle physics. For optical photons, there are many examples of devices capable of detecting single photons with high efficiency. However reliable single photon detection of microwaves is very difficult, principally due to their low energy. In this paper we present the theory of a cascade amplifier operating in the microwave regime that has an optimal quantum efficiency of 93%. The device uses a microwave photon to trigger the stimulated emission of a sequence of atoms where the energy transition is readily detectable. A detailed description of the detector's operation and some discussion of the potential limitations of the detector are presented.Comment: 8 pages, 5 figure
    • …
    corecore