11 research outputs found

    The Infrared Imaging Spectrograph (IRIS) for TMT: Data Reduction System

    Get PDF
    IRIS (InfraRed Imaging Spectrograph) is the diffraction-limited first light instrument for the Thirty Meter Telescope (TMT) that consists of a near-infrared (0.84 to 2.4 μ\mum) imager and integral field spectrograph (IFS). The IFS makes use of a lenslet array and slicer for spatial sampling, which will be able to operate in 100's of different modes, including a combination of four plate scales from 4 milliarcseconds (mas) to 50 mas with a large range of filters and gratings. The imager will have a field of view of 34×\times34 arcsec2^{2} with a plate scale of 4 mas with many selectable filters. We present the preliminary design of the data reduction system (DRS) for IRIS that need to address all of these observing modes. Reduction of IRIS data will have unique challenges since it will provide real-time reduction and analysis of the imaging and spectroscopic data during observational sequences, as well as advanced post-processing algorithms. The DRS will support three basic modes of operation of IRIS; reducing data from the imager, the lenslet IFS, and slicer IFS. The DRS will be written in Python, making use of open-source astronomical packages available. In addition to real-time data reduction, the DRS will utilize real-time visualization tools, providing astronomers with up-to-date evaluation of the target acquisition and data quality. The quicklook suite will include visualization tools for 1D, 2D, and 3D raw and reduced images. We discuss the overall requirements of the DRS and visualization tools, as well as necessary calibration data to achieve optimal data quality in order to exploit science cases across all cosmic distance scales.Comment: 13 pages, 2 figures, 6 tables, Proceeding 9913-165 of the SPIE Astronomical Telescopes + Instrumentation 201

    The InfraRed Imaging Spectrograph (IRIS) for TMT: latest science cases and simulations

    Full text link
    The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.Comment: 15 pages, 7 figures, SPIE (2016) 9909-0

    The Infrared Imaging Spectrograph (IRIS) for TMT: advancing the data reduction system

    Get PDF
    Infrared Imaging Spectrograph (IRIS) is the first light instrument for the Thirty Meter Telescope (TMT) that consists of a near-infrared (0.84 to 2.4 micron) imager and integral field spectrograph (IFS) which operates at the diffraction-limit utilizing the Narrow-Field Infrared Adaptive Optics System (NFIRAOS). The imager will have a 34 arcsec x 34 arcsec field of view with 4 milliarcsecond (mas) pixels. The IFS consists of a lenslet array and slicer, enabling four plate scales from 4 mas to 50 mas, multiple gratings and filters, which in turn will operate hundreds of individual modes. IRIS, operating in concert with NFIRAOS will pose many challenges for the data reduction system (DRS). Here we present the updated design of the real-time and post-processing DRS. The DRS will support two modes of operation of IRIS: (1) writing the raw readouts sent from the detectors and performing the sampling on all of the readouts for a given exposure to create a raw science frame; and (2) reduction of data from the imager, lenslet array and slicer IFS. IRIS is planning to save the raw readouts for a given exposure to enable sophisticated processing capabilities to the end users, such as the ability to remove individual poor seeing readouts to improve signal-to-noise, or from advanced knowledge of the point spread function (PSF). The readout processor (ROP) is a key part of the IRIS DRS design for writing and sampling of the raw readouts into a raw science frame, which will be passed to the TMT data archive. We discuss the use of sub-arrays on the imager detectors for saturation/persistence mitigation, on-detector guide windows, and fast readout science cases (< 1 second).Comment: 14 pages, 5 figures, 6 tables, Proceeding 10707-112 of the SPIE Astronomical Telescopes + Instrumentation 201

    The Infrared Imaging Spectrograph (IRIS) for TMT: Data Reduction System

    Get PDF
    IRIS (InfraRed Imaging Spectrograph) is the diffraction-limited first light instrument for the Thirty Meter Telescope (TMT) that consists of a near-infrared (0.84 to 2.4 μm) imager and integral field spectrograph (IFS). The IFS makes use of a lenslet array and slicer for spatial sampling, which will be able to operate in 100’s of different modes, including a combination of four plate scales from 4 milliarcseconds (mas) to 50 mas with a large range of filters and gratings. The imager will have a field of view of 34×34 arcsec^2 with a plate scale of 4 mas with many selectable filters. We present the preliminary design of the data reduction system (DRS) for IRIS that need to address all of these observing modes. Reduction of IRIS data will have unique challenges since it will provide real-time reduction and analysis of the imaging and spectroscopic data during observational sequences, as well as advanced post-processing algorithms. The DRS will support three basic modes of operation of IRIS; reducing data from the imager, the lenslet IFS, and slicer IFS. The DRS will be written in Python, making use of open-source astronomical packages available. In addition to real-time data reduction, the DRS will utilize real-time visualization tools, providing astronomers with up-to-date evaluation of the target acquisition and data quality. The quick look suite will include visualization tools for 1D, 2D, and 3D raw and reduced images. We discuss the overall requirements of the DRS and visualization tools, as well as necessary calibration data to achieve optimal data quality in order to exploit science cases across all cosmic distance scales

    The Infrared Imaging Spectrograph (IRIS) for TMT: advancing the data reduction system

    Get PDF
    Infrared Imaging Spectrograph (IRIS) is the first light instrument for the Thirty Meter Telescope (TMT) that consists of a near-infrared (0.84 to 2.4 micron) imager and integral field spectrograph (IFS) which operates at the diffraction-limit utilizing the Narrow-Field Infrared Adaptive Optics System (NFIRAOS). The imager will have a 34 arcsec x 34 arcsec field of view with 4 milliarcsecond (mas) pixels. The IFS consists of a lenslet array and slicer, enabling four plate scales from 4 mas to 50 mas, multiple gratings and filters, which in turn will operate hundreds of individual modes. IRIS, operating in concert with NFIRAOS will pose many challenges for the data reduction system (DRS). Here we present the updated design of the real-time and post-processing DRS. The DRS will support two modes of operation of IRIS: (1) writing the raw readouts sent from the detectors and performing the sampling on all of the readouts for a given exposure to create a raw science frame; and (2) reduction of data from the imager, lenslet array and slicer IFS. IRIS is planning to save the raw readouts for a given exposure to enable sophisticated processing capabilities to the end users, such as the ability to remove individual poor seeing readouts to improve signal-to-noise, or from advanced knowledge of the point spread function (PSF). The readout processor (ROP) is a key part of the IRIS DRS design for writing and sampling of the raw readouts into a raw science frame, which will be passed to the TMT data archive. We discuss the use of sub-arrays on the imager detectors for saturation/persistence mitigation, on-detector guide windows, and fast readout science cases (< 1 second)

    Fire at Eden's gate : Tom McCall & the Oregon story

    Get PDF
    1 p. Review produced for HC 441: Science Colloquium: Willamette River Environmental Health, Robert D. Clark Honors College, University of Oregon, Spring term, 2004.Print copies of the reviewed book are available through the UO Libraries under the call numbers: KNIGHT F881.35.M33 W35 1994; and: SCA OrColl F881.35.M33 W35 199

    The infrared imaging spectrograph (IRIS) for TMT: instrument overview

    No full text
    With the successful completion of our preliminary design phase, we will present an update on all design aspects of the IRIS near-infrared integral field spectrograph and wide-field imager for the Thirty Meter Telescope (TMT). IRIS works with the Narrow Field Infrared Adaptive Optics System (NFIRAOS) to make observations at the diffraction limit of TMT at wavelengths between 0.84 and 2.4 microns. The imager has been expanded to a 34 arcsec field of view and the spectrograph has a wide range of filter and spectral format combinations with a contiguous field of view up to 112x128 spatial elements. Among the many challenges the instrument faces, and has tried to address in its design, are atmospheric dispersion up to 100 times the sampling scale, unprecedented saturation issues in crowded fields, and the need for integrated on-instrument wavefront sensors. But the scientific payoff is enormous and IRIS on TMT will open entirely new opportunities in all areas of astrophysical science

    The infrared imaging spectrograph (IRIS) for TMT: instrument overview

    No full text
    With the successful completion of our preliminary design phase, we will present an update on all design aspects of the IRIS near-infrared integral field spectrograph and wide-field imager for the Thirty Meter Telescope (TMT). IRIS works with the Narrow Field Infrared Adaptive Optics System (NFIRAOS) to make observations at the diffraction limit of TMT at wavelengths between 0.84 and 2.4 microns. The imager has been expanded to a 34 arcsec field of view and the spectrograph has a wide range of filter and spectral format combinations with a contiguous field of view up to 112x128 spatial elements. Among the many challenges the instrument faces, and has tried to address in its design, are atmospheric dispersion up to 100 times the sampling scale, unprecedented saturation issues in crowded fields, and the need for integrated on-instrument wavefront sensors. But the scientific payoff is enormous and IRIS on TMT will open entirely new opportunities in all areas of astrophysical science

    The Portland region: Where city and suburbs talk to each other ... and sometimes agree

    Get PDF
    Portland, OR, is often cited as an example of successful regional governance and planning. The metropolitan area appears to match many of the precepts of the popular compact city model of urban growth and to demonstrate the capacity of local and state government to shape growing metropolitan regions. Given this reputation, it is important to evaluate the relevance of the Portland experience for other communities, distinguishing unique local circumstances form generalizable characteristics. This analysis explores the spatial character of metropolitan Portland in the 1990s, summarizes the politics of regional planning, examines weaknesses in the Portland approach, and offers suggestions for other metropolitan areas. The study finds that many of Portland\u27s accomplishments center on urban design, but that the region\u27s most distinguishing characteristics is its attention to political process. The discussion concludes with suggestions about the value of extensive civic discourse,incremental policy making, and institution building
    corecore