9,336 research outputs found

    Solidification in soft-core fluids: disordered solids from fast solidification fronts

    Get PDF
    Using dynamical density functional theory we calculate the speed of solidification fronts advancing into a quenched two-dimensional model fluid of soft-core particles. We find that solidification fronts can advance via two different mechanisms, depending on the depth of the quench. For shallow quenches, the front propagation is via a nonlinear mechanism. For deep quenches, front propagation is governed by a linear mechanism and in this regime we are able to determine the front speed via a marginal stability analysis. We find that the density modulations generated behind the advancing front have a characteristic scale that differs from the wavelength of the density modulation in thermodynamic equilibrium, i.e., the spacing between the crystal planes in an equilibrium crystal. This leads to the subsequent development of disorder in the solids that are formed. For the one-component fluid, the particles are able to rearrange to form a well-ordered crystal, with few defects. However, solidification fronts in a binary mixture exhibiting crystalline phases with square and hexagonal ordering generate solids that are unable to rearrange after the passage of the solidification front and a significant amount of disorder remains in the system.Comment: 18 pages, 14 fig

    Development program for 35 watt traveling-wave tube space amplifier Final report, 30 Jun. 1967 - 30 Sep. 1969

    Get PDF
    Development of 35-watt, S band, traveling wave tube amplifier for Saturn 5 instrument uni

    Black Hole Entropy, Topological Entropy and the Baum-Connes Conjecture in K-Theory

    Full text link
    We shall try to exhibit a relation between black hole entropy and topological entropy using the famous Baum-Connes conjecture for foliated manifolds which are particular examples of noncommutative spaces. Our argument is qualitative and it is based on the microscopic origin of the Beckenstein-Hawking area-entropy formula for black holes, provided by superstring theory, in the more general noncommutative geometric context of M-Theory following the Connes- Douglas-Schwarz article.Comment: 17 pages, Latex, contains an important paragraph in section 2 which gives a better understandin

    Light trapping in ultrathin plasmonic solar cells

    Get PDF
    We report on the design, fabrication, and measurement of ultrathin film a-Si:H solar cells with nanostructured plasmonic back contacts, which demonstrate enhanced short circuit current densities compared to cells having flat or randomly textured back contacts. The primary photocurrent enhancement occurs in the spectral range from 550 nm to 800 nm. We use angle-resolved photocurrent spectroscopy to confirm that the enhanced absorption is due to coupling to guided modes supported by the cell. Full-field electromagnetic simulation of the absorption in the active a-Si:H layer agrees well with the experimental results. Furthermore, the nanopatterns were fabricated via an inexpensive, scalable, and precise nanopatterning method. These results should guide design of optimized, non-random nanostructured back reflectors for thin film solar cells

    Cellular automata and Lyapunov exponents

    Full text link
    In this article we give a new definition of some analog of Lyapunov exponents for cellular automata . Then for a shift ergodic and cellular automaton invariant probability measure we establish an inequality between the entropy of the automaton, the entropy of the shift and the Lyapunov exponent

    Global Molecular Identification from Graphs. IV. Molecules with Four Closed p-Shell Atoms and beyond

    Get PDF
    The identification of main-group molecules having atoms with closed valence p shells, i.e., having atoms with eight valence electrons, is continued into the realm of four-atom molecules. All possible covalently-bonded species, obtained from two independent computer programs, are shown. The method for generalizing to molecules in which some or all atoms have closed valence s shells, i.e., having atoms with two valence electrons, is recalled. A list of all prototype linear/bent four-atom molecules, with dative bonds in addition to covalent and/or van der Waals bonds, is presented (permutations having been culled out). A program code, lists of molecules based on other graphs, and lists of five- and covalently-bonded six-atom species, are available on the Web. For molecules derived from the two other four-vertex graphs, their vast numbers require extensive indexing schemes for the results to be useful. The paper concludes with some preliminary observations concerning the stabilities of four-atom molecules having atoms with closed shells

    Are pilot trials useful for predicting randomisation and attrition rates in definitive studies: A review of publicly funded trials

    Get PDF
    BACKGROUND/AIMS: External pilot trials are recommended for testing the feasibility of main or confirmatory trials. However, there is little evidence that progress in external pilot trials actually predicts randomisation and attrition rates in the main trial. To assess the use of external pilot trials in trial design, we compared randomisation and attrition rates in publicly funded randomised controlled trials with rates in their pilots. METHODS: Randomised controlled trials for which there was an external pilot trial were identified from reports published between 2004 and 2013 in the Health Technology Assessment Journal. Data were extracted from published papers, protocols and reports. Bland-Altman plots and descriptive statistics were used to investigate the agreement of randomisation and attrition rates between the full and external pilot trials. RESULTS: Of 561 reports, 41 were randomised controlled trials with pilot trials and 16 met criteria for a pilot trial with sufficient data. Mean attrition and randomisation rates were 21.1% and 50.4%, respectively, in the pilot trials and 16.8% and 65.2% in the main. There was minimal bias in the pilot trial when predicting the main trial attrition and randomisation rate. However, the variation was large: the mean difference in the attrition rate between the pilot and main trial was -4.4% with limits of agreement of -37.1% to 28.2%. Limits of agreement for randomisation rates were -47.8% to 77.5%. CONCLUSION: Results from external pilot trials to estimate randomisation and attrition rates should be used with caution as comparison of the difference in the rates between pilots and their associated full trial demonstrates high variability. We suggest using internal pilot trials wherever appropriate

    Numerical simulation of transom-stern waves

    Full text link
    The flow field generated by a transom-stern hullform is a complex, broad-banded, three-dimensional phenomenon marked by a large breaking wave. This unsteady multiphase turbulent flow feature is difficult to study experimentally and simulate numerically. The results of a set of numerical simulations, which use the Numerical Flow Analysis (NFA) code, of the flow around the Model 5673 transom stern at speeds covering both wet- and dry-transom operating conditions are shown in the accompanying fluid dynamics video. The numerical predictions for wet-transom and dry-transom conditions are presented to demonstrate the current state of the art in the simulation of ship generated breaking waves. The interested reader is referred to Drazen et al. (2010) for a detailed and comprehensive comparison with experiments conducted at the Naval Surface Warfare Center Carderock Division (NSWCCD).Comment: Fluid Dynamics Video for 2010 APS Division of Fluid Dynamics Gallery of Fluid Motion include
    corecore